view src/fftw-3.3.8/genfft/algsimp.ml @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
line wrap: on
line source
(*
 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 *)


open Util
open Expr

let node_insert x =  Assoctable.insert Expr.hash x
let node_lookup x =  Assoctable.lookup Expr.hash (==) x

(*************************************************************
 * Algebraic simplifier/elimination of common subexpressions
 *************************************************************)
module AlgSimp : sig 
  val algsimp : expr list -> expr list
end = struct

  open Monads.StateMonad
  open Monads.MemoMonad
  open Assoctable

  let fetchSimp = 
    fetchState >>= fun (s, _) -> returnM s
  let storeSimp s =
    fetchState >>= (fun (_, c) -> storeState (s, c))
  let lookupSimpM key =
    fetchSimp >>= fun table ->
      returnM (node_lookup key table)
  let insertSimpM key value =
    fetchSimp >>= fun table ->
      storeSimp (node_insert key value table)

  let subset a b =
    List.for_all (fun x -> List.exists (fun y -> x == y) b) a

  let structurallyEqualCSE a b = 
    match (a, b) with
    | (Num a, Num b) -> Number.equal a b
    | (NaN a, NaN b) -> a == b
    | (Load a, Load b) -> Variable.same a b
    | (Times (a, a'), Times (b, b')) ->
 	((a == b) && (a' == b')) ||
 	((a == b') && (a' == b))
    | (CTimes (a, a'), CTimes (b, b')) ->
 	((a == b) && (a' == b')) ||
 	((a == b') && (a' == b))
    | (CTimesJ (a, a'), CTimesJ (b, b')) -> ((a == b) && (a' == b'))
    | (Plus a, Plus b) -> subset a b && subset b a
    | (Uminus a, Uminus b) -> (a == b)
    | _ -> false

  let hashCSE x = 
    if (!Magic.randomized_cse) then
      Oracle.hash x
    else
      Expr.hash x

  let equalCSE a b = 
    if (!Magic.randomized_cse) then
      (structurallyEqualCSE a b || Oracle.likely_equal a b)
    else
      structurallyEqualCSE a b

  let fetchCSE = 
    fetchState >>= fun (_, c) -> returnM c
  let storeCSE c =
    fetchState >>= (fun (s, _) -> storeState (s, c))
  let lookupCSEM key =
    fetchCSE >>= fun table ->
      returnM (Assoctable.lookup hashCSE equalCSE key table)
  let insertCSEM key value =
    fetchCSE >>= fun table ->
      storeCSE (Assoctable.insert hashCSE key value table)

  (* memoize both x and Uminus x (unless x is already negated) *) 
  let identityM x =
    let memo x = memoizing lookupCSEM insertCSEM returnM x in
    match x with
	Uminus _ -> memo x 
      |	_ -> memo x >>= fun x' -> memo (Uminus x') >> returnM x'

  let makeNode = identityM

  (* simplifiers for various kinds of nodes *)
  let rec snumM = function
      n when Number.is_zero n -> 
	makeNode (Num (Number.zero))
    | n when Number.negative n -> 
	makeNode (Num (Number.negate n)) >>= suminusM
    | n -> makeNode (Num n)

  and suminusM = function
      Uminus x -> makeNode x
    | Num a when (Number.is_zero a) -> snumM Number.zero
    | a -> makeNode (Uminus a)

  and stimesM = function 
    | (Uminus a, b) -> stimesM (a, b) >>= suminusM
    | (a, Uminus b) -> stimesM (a, b) >>= suminusM
    | (NaN I, CTimes (a, b)) -> stimesM (NaN I, b) >>= 
	fun ib -> sctimesM (a, ib)
    | (NaN I, CTimesJ (a, b)) -> stimesM (NaN I, b) >>= 
	fun ib -> sctimesjM (a, ib)
    | (Num a, Num b) -> snumM (Number.mul a b)
    | (Num a, Times (Num b, c)) -> 
	snumM (Number.mul a b) >>= fun x -> stimesM (x, c)
    | (Num a, b) when Number.is_zero a -> snumM Number.zero
    | (Num a, b) when Number.is_one a -> makeNode b
    | (Num a, b) when Number.is_mone a -> suminusM b
    | (a, b) when is_known_constant b && not (is_known_constant a) -> 
	stimesM (b, a)
    | (a, b) -> makeNode (Times (a, b))

  and sctimesM = function 
    | (Uminus a, b) -> sctimesM (a, b) >>= suminusM
    | (a, Uminus b) -> sctimesM (a, b) >>= suminusM
    | (a, b) -> makeNode (CTimes (a, b))

  and sctimesjM = function 
    | (Uminus a, b) -> sctimesjM (a, b) >>= suminusM
    | (a, Uminus b) -> sctimesjM (a, b) >>= suminusM
    | (a, b) -> makeNode (CTimesJ (a, b))

  and reduce_sumM x = match x with
    [] -> returnM []
  | [Num a] -> 
      if (Number.is_zero a) then 
	returnM [] 
      else returnM x
  | [Uminus (Num a)] -> 
      if (Number.is_zero a) then 
	returnM [] 
      else returnM x
  | (Num a) :: (Num b) :: s -> 
      snumM (Number.add a b) >>= fun x ->
	reduce_sumM (x :: s)
  | (Num a) :: (Uminus (Num b)) :: s -> 
      snumM (Number.sub a b) >>= fun x ->
	reduce_sumM (x :: s)
  | (Uminus (Num a)) :: (Num b) :: s -> 
      snumM (Number.sub b a) >>= fun x ->
	reduce_sumM (x :: s)
  | (Uminus (Num a)) :: (Uminus (Num b)) :: s -> 
      snumM (Number.add a b) >>= 
      suminusM >>= fun x ->
	reduce_sumM (x :: s)
  | ((Num _) as a) :: b :: s -> reduce_sumM (b :: a :: s)
  | ((Uminus (Num _)) as a) :: b :: s -> reduce_sumM (b :: a :: s)
  | a :: s -> 
      reduce_sumM s >>= fun s' -> returnM (a :: s')

  and collectible1 = function
    | NaN _ -> false
    | Uminus x -> collectible1 x
    | _ -> true
  and collectible (a, b) = collectible1 a

  (* collect common factors: ax + bx -> (a+b)x *)
  and collectM which x = 
    let rec findCoeffM which = function
      |	Times (a, b) when collectible (which (a, b)) -> returnM (which (a, b))
      | Uminus x -> 
	  findCoeffM which x >>= fun (coeff, b) ->
	    suminusM coeff >>= fun mcoeff ->
 	      returnM (mcoeff, b)
      | x -> snumM Number.one >>= fun one -> returnM (one, x)
    and separateM xpr = function
 	[] -> returnM ([], [])
      |	a :: b ->
 	  separateM xpr b >>= fun (w, wo) ->
	    (* try first factor *)
 	    findCoeffM (fun (a, b) -> (a, b)) a >>= fun (c, x) ->
 	      if (xpr == x) && collectible (c, x) then returnM (c :: w, wo)
 	      else
	      (* try second factor *)
 		findCoeffM (fun (a, b) -> (b, a)) a >>= fun (c, x) ->
 		  if (xpr == x) && collectible (c, x) then returnM (c :: w, wo)
 		  else returnM (w, a :: wo)
    in match x with
      [] -> returnM x
    | [a] -> returnM x
    | a :: b ->
 	findCoeffM which a >>= fun (_, xpr) ->
 	  separateM xpr x >>= fun (w, wo) ->
 	    collectM which wo >>= fun wo' ->
 	      splusM w >>= fun w' ->
 		stimesM (w', xpr) >>= fun t' ->
 		  returnM (t':: wo')

  and mangleSumM x = returnM x
      >>= reduce_sumM 
      >>= collectM (fun (a, b) -> (a, b))
      >>= collectM (fun (a, b) -> (b, a))
      >>= reduce_sumM 
      >>= deepCollectM !Magic.deep_collect_depth
      >>= reduce_sumM

  and reorder_uminus = function  (* push all Uminuses to the end *)
      [] -> []
    | ((Uminus _) as a' :: b) -> (reorder_uminus b) @ [a']
    | (a :: b) -> a :: (reorder_uminus b)                      

  and canonicalizeM = function 
      [] -> snumM Number.zero
    | [a] -> makeNode a                    (* one term *)
    | a -> generateFusedMultAddM (reorder_uminus a)

  and generateFusedMultAddM = 
    let rec is_multiplication = function
      | Times (Num a, b) -> true
      | Uminus (Times (Num a, b)) -> true
      | _ -> false
    and separate = function
	[] -> ([], [], Number.zero)
      | (Times (Num a, b)) as this :: c -> 
	  let (x, y, max) = separate c in
	  let newmax = if (Number.greater a max) then a else max in
	  (this :: x, y, newmax)
      | (Uminus (Times (Num a, b))) as this :: c -> 
	  let (x, y, max) = separate c in
	  let newmax = if (Number.greater a max) then a else max in
	  (this :: x, y, newmax)
      | this :: c ->
	  let (x, y, max) = separate c in
	  (x, this :: y, max)
    in fun l ->
      if !Magic.enable_fma && count is_multiplication l >= 2 then
	let (w, wo, max) = separate l in
	snumM (Number.div Number.one max) >>= fun invmax' ->
	  snumM max >>= fun max' ->
	    mapM (fun x -> stimesM (invmax', x)) w >>= splusM >>= fun pw' ->
	      stimesM (max', pw') >>= fun mw' ->
		splusM (wo @ [mw'])
      else 
	makeNode (Plus l)


  and negative = function
      Uminus _ -> true
    | _ -> false

  (*
   * simplify patterns of the form
   *
   *  ((c_1 * a + ...) + ...) +  (c_2 * a + ...)
   *
   * The pattern includes arbitrary coefficients and minus signs.
   * A common case of this pattern is the butterfly
   *   (a + b) + (a - b)
   *   (a + b) - (a - b)
   *)
  (* this whole procedure needs much more thought *)
  and deepCollectM maxdepth l =
    let rec findTerms depth x = match x with
      | Uminus x -> findTerms depth x
      |	Times (Num _, b) -> (findTerms (depth - 1) b)
      |	Plus l when depth > 0 ->
	  x :: List.flatten (List.map (findTerms (depth - 1)) l)
      |	x -> [x]
    and duplicates = function
	[] -> []
      |	a :: b -> if List.memq a b then a :: duplicates b
      else duplicates b

    in let rec splitDuplicates depth d x =
      if (List.memq x d) then 
	snumM (Number.zero) >>= fun zero ->
	  returnM (zero, x)
      else match x with
      |	Times (a, b) ->
	  splitDuplicates (depth - 1) d a >>= fun (a', xa) ->
	    splitDuplicates (depth - 1) d b >>= fun (b', xb) ->
	      stimesM (a', b') >>= fun ab ->
		stimesM (a, xb) >>= fun xb' ->
		  stimesM (xa, b) >>= fun xa' ->
		    stimesM (xa, xb) >>= fun xab ->
		      splusM [xa'; xb'; xab] >>= fun x ->
			returnM (ab, x)
      | Uminus a -> 
	  splitDuplicates depth d a >>= fun (x, y) ->
	    suminusM x >>= fun ux -> 
	      suminusM y >>= fun uy -> 
		returnM (ux, uy)
      |	Plus l when depth > 0 -> 
	  mapM (splitDuplicates (depth - 1) d) l >>= fun ld ->
	    let (l', d') = List.split ld in
	    splusM l' >>= fun p ->
	      splusM d' >>= fun d'' ->
	      returnM (p, d'')
      |	x -> 
	  snumM (Number.zero) >>= fun zero' ->
	    returnM (x, zero')

    in let l' = List.flatten (List.map (findTerms maxdepth) l)
    in match duplicates l' with
    | [] -> returnM l
    | d ->
	mapM (splitDuplicates maxdepth d) l >>= fun ld ->
	  let (l', d') = List.split ld in
	  splusM l' >>= fun l'' ->
	    let rec flattenPlusM = function
	      | Plus l -> returnM l
	      | Uminus x ->
		  flattenPlusM x >>= mapM suminusM
	      | x -> returnM [x]
	    in
	    mapM flattenPlusM d' >>= fun d'' ->
	      splusM (List.flatten d'') >>= fun d''' ->
		mangleSumM [l''; d''']

  and splusM l =
    let fma_heuristics x = 
      if !Magic.enable_fma then 
	match x with
	| [Uminus (Times _); Times _] -> Some false
	| [Times _; Uminus (Times _)] -> Some false
	| [Uminus (_); Times _] -> Some true
	| [Times _; Uminus (Plus _)] -> Some true
	| [_; Uminus (Times _)] -> Some false
	| [Uminus (Times _); _] -> Some false
	| _ -> None
      else
	None
    in
    mangleSumM l >>=  fun l' ->
      (* no terms are negative.  Don't do anything *)
      if not (List.exists negative l') then
	canonicalizeM l'
      (* all terms are negative.  Negate them all and collect the minus sign *)
      else if List.for_all negative l' then
	mapM suminusM l' >>= splusM >>= suminusM
      else match fma_heuristics l' with
      |	Some true -> mapM suminusM l' >>= splusM >>= suminusM
      |	Some false -> canonicalizeM l'
      |	None ->
         (* Ask the Oracle for the canonical form *)
	  if (not !Magic.randomized_cse) &&
	    Oracle.should_flip_sign (Plus l') then
	    mapM suminusM l' >>= splusM >>= suminusM
	  else
	    canonicalizeM l'

  (* monadic style algebraic simplifier for the dag *)
  let rec algsimpM x =
    memoizing lookupSimpM insertSimpM 
      (function 
 	| Num a -> snumM a
 	| NaN _ as x -> makeNode x
 	| Plus a -> 
 	    mapM algsimpM a >>= splusM
 	| Times (a, b) -> 
 	    (algsimpM a >>= fun a' ->
 	      algsimpM b >>= fun b' ->
 		stimesM (a', b'))
 	| CTimes (a, b) -> 
 	    (algsimpM a >>= fun a' ->
 	      algsimpM b >>= fun b' ->
		sctimesM (a', b'))
 	| CTimesJ (a, b) -> 
 	    (algsimpM a >>= fun a' ->
 	      algsimpM b >>= fun b' ->
		sctimesjM (a', b'))
 	| Uminus a -> 
 	    algsimpM a >>= suminusM 
 	| Store (v, a) ->
 	    algsimpM a >>= fun a' ->
 	      makeNode (Store (v, a'))
 	| Load _ as x -> makeNode x)
      x

   let initialTable = (empty, empty)
   let simp_roots = mapM algsimpM
   let algsimp = runM initialTable simp_roots
end

(*************************************************************
 * Network transposition algorithm
 *************************************************************)
module Transpose = struct
  open Monads.StateMonad
  open Monads.MemoMonad
  open Littlesimp

  let fetchDuals = fetchState
  let storeDuals = storeState

  let lookupDualsM key =
    fetchDuals >>= fun table ->
      returnM (node_lookup key table)

  let insertDualsM key value =
    fetchDuals >>= fun table ->
      storeDuals (node_insert key value table)

  let rec visit visited vtable parent_table = function
      [] -> (visited, parent_table)
    | node :: rest ->
	match node_lookup node vtable with
	| Some _ -> visit visited vtable parent_table rest
	| None ->
	    let children = match node with
	    | Store (v, n) -> [n]
	    | Plus l -> l
	    | Times (a, b) -> [a; b]
	    | CTimes (a, b) -> [a; b]
	    | CTimesJ (a, b) -> [a; b]
	    | Uminus x -> [x]
	    | _ -> []
	    in let rec loop t = function
		[] -> t
	      |	a :: rest ->
		  (match node_lookup a t with
		    None -> loop (node_insert a [node] t) rest
		  | Some c -> loop (node_insert a (node :: c) t) rest)
	    in 
	    (visit 
	       (node :: visited)
	       (node_insert node () vtable)
	       (loop parent_table children)
	       (children @ rest))

  let make_transposer parent_table =
    let rec termM node candidate_parent = 
      match candidate_parent with
      |	Store (_, n) when n == node -> 
	  dualM candidate_parent >>= fun x' -> returnM [x']
      | Plus (l) when List.memq node l -> 
	  dualM candidate_parent >>= fun x' -> returnM [x']
      | Times (a, b) when b == node -> 
	  dualM candidate_parent >>= fun x' -> 
	    returnM [makeTimes (a, x')]
      | CTimes (a, b) when b == node -> 
	  dualM candidate_parent >>= fun x' -> 
	    returnM [CTimes (a, x')]
      | CTimesJ (a, b) when b == node -> 
	  dualM candidate_parent >>= fun x' -> 
	    returnM [CTimesJ (a, x')]
      | Uminus n when n == node -> 
	  dualM candidate_parent >>= fun x' -> 
	    returnM [makeUminus x']
      | _ -> returnM []
    
    and dualExpressionM this_node = 
      mapM (termM this_node) 
	(match node_lookup this_node parent_table with
	| Some a -> a
	| None -> failwith "bug in dualExpressionM"
	) >>= fun l ->
	returnM (makePlus (List.flatten l))

    and dualM this_node =
      memoizing lookupDualsM insertDualsM
	(function
	  | Load v as x -> 
	      if (Variable.is_constant v) then
		returnM (Load v)
	      else
		(dualExpressionM x >>= fun d ->
		  returnM (Store (v, d)))
	  | Store (v, x) -> returnM (Load v)
	  | x -> dualExpressionM x)
	this_node

    in dualM

  let is_store = function 
    | Store _ -> true
    | _ -> false

  let transpose dag = 
    let _ = Util.info "begin transpose" in
    let (all_nodes, parent_table) = 
      visit [] Assoctable.empty Assoctable.empty dag in
    let transposerM = make_transposer parent_table in
    let mapTransposerM = mapM transposerM in
    let duals = runM Assoctable.empty mapTransposerM all_nodes in
    let roots = List.filter is_store duals in
    let _ = Util.info "end transpose" in
    roots
end


(*************************************************************
 * Various dag statistics
 *************************************************************)
module Stats : sig
  type complexity
  val complexity : Expr.expr list -> complexity
  val same_complexity : complexity -> complexity -> bool
  val leq_complexity : complexity -> complexity -> bool
  val to_string : complexity -> string
end = struct
  type complexity = int * int * int * int * int * int
  let rec visit visited vtable = function
      [] -> visited
    | node :: rest ->
	match node_lookup node vtable with
	  Some _ -> visit visited vtable rest
	| None ->
	    let children = match node with
	      Store (v, n) -> [n]
	    | Plus l -> l
	    | Times (a, b) -> [a; b]
	    | Uminus x -> [x]
	    | _ -> []
	    in visit (node :: visited)
	      (node_insert node () vtable)
	      (children @ rest)

  let complexity dag = 
    let rec loop (load, store, plus, times, uminus, num) = function 
      	[] -> (load, store, plus, times, uminus, num)
      | node :: rest ->
	  loop
	    (match node with
	    | Load _ -> (load + 1, store, plus, times, uminus, num)
	    | Store _ -> (load, store + 1, plus, times, uminus, num)
	    | Plus x -> (load, store, plus + (List.length x - 1), times, uminus, num)
	    | Times _ -> (load, store, plus, times + 1, uminus, num)
	    | Uminus _ -> (load, store, plus, times, uminus + 1, num)
	    | Num _ -> (load, store, plus, times, uminus, num + 1)
	    | CTimes _ -> (load, store, plus, times, uminus, num)
	    | CTimesJ _ -> (load, store, plus, times, uminus, num)
	    | NaN _ -> (load, store, plus, times, uminus, num))
	    rest
    in let (l, s, p, t, u, n) = 
      loop (0, 0, 0, 0, 0, 0) (visit [] Assoctable.empty dag)
    in (l, s, p, t, u, n)

  let weight (l, s, p, t, u, n) =
    l + s + 10 * p + 20 * t + u + n

  let same_complexity a b = weight a = weight b
  let leq_complexity a b = weight a <= weight b

  let to_string (l, s, p, t, u, n) =
    Printf.sprintf "ld=%d st=%d add=%d mul=%d uminus=%d num=%d\n"
		   l s p t u n
		   
end    

(* simplify the dag *)
let algsimp v = 
  let rec simplification_loop v =
    let () = Util.info "simplification step" in
    let complexity = Stats.complexity v in
    let () = Util.info ("complexity = " ^ (Stats.to_string complexity)) in
    let v = (AlgSimp.algsimp @@ Transpose.transpose @@ 
	     AlgSimp.algsimp @@ Transpose.transpose) v in
    let complexity' = Stats.complexity v in
    let () = Util.info ("complexity = " ^ (Stats.to_string complexity')) in
    if (Stats.leq_complexity complexity' complexity) then
      let () = Util.info "end algsimp" in
      v
    else
      simplification_loop v

  in
  let () = Util.info "begin algsimp" in
  let v = AlgSimp.algsimp v in
  if !Magic.network_transposition then simplification_loop v else v