view src/fftw-3.3.8/dft/indirect-transpose.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents d0c2a83c1364
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* solvers/plans for vectors of DFTs corresponding to the columns
   of a matrix: first transpose the matrix so that the DFTs are
   contiguous, then do DFTs with transposed output.   In particular,
   we restrict ourselves to the case of a square transpose (or a
   sequence thereof). */

#include "dft/dft.h"

typedef solver S;

typedef struct {
     plan_dft super;
     INT vl, ivs, ovs;
     plan *cldtrans, *cld, *cldrest;
} P;

/* initial transpose is out-of-place from input to output */
static void apply_op(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
     const P *ego = (const P *) ego_;
     INT vl = ego->vl, ivs = ego->ivs, ovs = ego->ovs, i;

     for (i = 0; i < vl; ++i) {
	  {
	       plan_dft *cldtrans = (plan_dft *) ego->cldtrans;
	       cldtrans->apply(ego->cldtrans, ri, ii, ro, io);
	  }
	  {
	       plan_dft *cld = (plan_dft *) ego->cld;
	       cld->apply(ego->cld, ro, io, ro, io);
	  }
	  ri += ivs; ii += ivs;
	  ro += ovs; io += ovs;
     }
     {
	  plan_dft *cldrest = (plan_dft *) ego->cldrest;
	  cldrest->apply(ego->cldrest, ri, ii, ro, io);
     }
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(plan_destroy_internal)(ego->cldrest);
     X(plan_destroy_internal)(ego->cld);
     X(plan_destroy_internal)(ego->cldtrans);
}

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     X(plan_awake)(ego->cldtrans, wakefulness);
     X(plan_awake)(ego->cld, wakefulness);
     X(plan_awake)(ego->cldrest, wakefulness);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     p->print(p, "(indirect-transpose%v%(%p%)%(%p%)%(%p%))", 
	      ego->vl, ego->cldtrans, ego->cld, ego->cldrest);
}

static int pickdim(const tensor *vs, const tensor *s, int *pdim0, int *pdim1)
{
     int dim0, dim1;
     *pdim0 = *pdim1 = -1;
     for (dim0 = 0; dim0 < vs->rnk; ++dim0)
          for (dim1 = 0; dim1 < s->rnk; ++dim1) 
	       if (vs->dims[dim0].n * X(iabs)(vs->dims[dim0].is) <= X(iabs)(s->dims[dim1].is)
		   && vs->dims[dim0].n >= s->dims[dim1].n
		   && (*pdim0 == -1 
		       || (X(iabs)(vs->dims[dim0].is) <= X(iabs)(vs->dims[*pdim0].is)
			   && X(iabs)(s->dims[dim1].is) >= X(iabs)(s->dims[*pdim1].is)))) {
		    *pdim0 = dim0;
		    *pdim1 = dim1;
	       }
     return (*pdim0 != -1 && *pdim1 != -1);
}

static int applicable0(const solver *ego_, const problem *p_,
		       const planner *plnr,
		       int *pdim0, int *pdim1)
{
     const problem_dft *p = (const problem_dft *) p_;
     UNUSED(ego_); UNUSED(plnr);

     return (1
	     && FINITE_RNK(p->vecsz->rnk) && FINITE_RNK(p->sz->rnk)

	     /* FIXME: can/should we relax this constraint? */
	     && X(tensor_inplace_strides2)(p->vecsz, p->sz)

	     && pickdim(p->vecsz, p->sz, pdim0, pdim1)

	     /* output should not *already* include the transpose
		(in which case we duplicate the regular indirect.c) */
	     && (p->sz->dims[*pdim1].os != p->vecsz->dims[*pdim0].is)
	  );
}

static int applicable(const solver *ego_, const problem *p_,
		      const planner *plnr,
		      int *pdim0, int *pdim1)
{
     if (!applicable0(ego_, p_, plnr, pdim0, pdim1)) return 0;
     {
          const problem_dft *p = (const problem_dft *) p_;
	  INT u = p->ri == p->ii + 1 || p->ii == p->ri + 1 ? (INT)2 : (INT)1;

	  /* UGLY if does not result in contiguous transforms or
	     transforms of contiguous vectors (since the latter at
	     least have efficient transpositions) */
	  if (NO_UGLYP(plnr)
	      && p->vecsz->dims[*pdim0].is != u
	      && !(p->vecsz->rnk == 2
		   && p->vecsz->dims[1-*pdim0].is == u
		   && p->vecsz->dims[*pdim0].is
		      == u * p->vecsz->dims[1-*pdim0].n))
	       return 0;

	  if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0;
     }
     return 1;
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const problem_dft *p = (const problem_dft *) p_;
     P *pln;
     plan *cld = 0, *cldtrans = 0, *cldrest = 0;
     int pdim0, pdim1;
     tensor *ts, *tv;
     INT vl, ivs, ovs;
     R *rit, *iit, *rot, *iot;

     static const plan_adt padt = {
	  X(dft_solve), awake, print, destroy
     };

     if (!applicable(ego_, p_, plnr, &pdim0, &pdim1))
          return (plan *) 0;

     vl = p->vecsz->dims[pdim0].n / p->sz->dims[pdim1].n;
     A(vl >= 1);
     ivs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].is;
     ovs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].os;
     rit = TAINT(p->ri, vl == 1 ? 0 : ivs);
     iit = TAINT(p->ii, vl == 1 ? 0 : ivs);
     rot = TAINT(p->ro, vl == 1 ? 0 : ovs);
     iot = TAINT(p->io, vl == 1 ? 0 : ovs);

     ts = X(tensor_copy_inplace)(p->sz, INPLACE_IS);
     ts->dims[pdim1].os = p->vecsz->dims[pdim0].is;
     tv = X(tensor_copy_inplace)(p->vecsz, INPLACE_IS);
     tv->dims[pdim0].os = p->sz->dims[pdim1].is;
     tv->dims[pdim0].n = p->sz->dims[pdim1].n;
     cldtrans = X(mkplan_d)(plnr, 
			    X(mkproblem_dft_d)(X(mktensor_0d)(),
					       X(tensor_append)(tv, ts),
					       rit, iit, 
					       rot, iot));
     X(tensor_destroy2)(ts, tv);
     if (!cldtrans) goto nada;

     ts = X(tensor_copy)(p->sz);
     ts->dims[pdim1].is = p->vecsz->dims[pdim0].is;
     tv = X(tensor_copy)(p->vecsz);
     tv->dims[pdim0].is = p->sz->dims[pdim1].is;
     tv->dims[pdim0].n = p->sz->dims[pdim1].n;
     cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)(ts, tv,
						rot, iot,
						rot, iot));
     if (!cld) goto nada;

     tv = X(tensor_copy)(p->vecsz);
     tv->dims[pdim0].n -= vl * p->sz->dims[pdim1].n;
     cldrest = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(tensor_copy)(p->sz), tv,
						    p->ri + ivs * vl,
						    p->ii + ivs * vl,
						    p->ro + ovs * vl,
						    p->io + ovs * vl));
     if (!cldrest) goto nada;

     pln = MKPLAN_DFT(P, &padt, apply_op);
     pln->cldtrans = cldtrans;
     pln->cld = cld;
     pln->cldrest = cldrest;
     pln->vl = vl;
     pln->ivs = ivs;
     pln->ovs = ovs;
     X(ops_cpy)(&cldrest->ops, &pln->super.super.ops);
     X(ops_madd2)(vl, &cld->ops, &pln->super.super.ops);
     X(ops_madd2)(vl, &cldtrans->ops, &pln->super.super.ops);
     return &(pln->super.super);

 nada:
     X(plan_destroy_internal)(cldrest);
     X(plan_destroy_internal)(cld);
     X(plan_destroy_internal)(cldtrans);
     return (plan *)0;
}

static solver *mksolver(void)
{
     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     return slv;
}

void X(dft_indirect_transpose_register)(planner *p)
{
     REGISTER_SOLVER(p, mksolver());
}