view src/fftw-3.3.5/threads/hc2hc.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 2cd0e3b3e1fd
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include "threads.h"

typedef struct {
     plan_rdft super;
     plan *cld;
     plan **cldws;
     int nthr;
     INT r;
} P;

typedef struct {
     plan **cldws;
     R *IO;
} PD;

static void *spawn_apply(spawn_data *d)
{
     PD *ego = (PD *) d->data;
     
     plan_hc2hc *cldw = (plan_hc2hc *) (ego->cldws[d->thr_num]);
     cldw->apply((plan *) cldw, ego->IO);
     return 0;
}

static void apply_dit(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     plan_rdft *cld;

     cld = (plan_rdft *) ego->cld;
     cld->apply((plan *) cld, I, O);

     {
	  PD d;
	  
	  d.IO = O;
	  d.cldws = ego->cldws;

	  X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
     }
}

static void apply_dif(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     plan_rdft *cld;

     {
	  PD d;
	  
	  d.IO = I;
	  d.cldws = ego->cldws;

	  X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d);
     }

     cld = (plan_rdft *) ego->cld;
     cld->apply((plan *) cld, I, O);
}

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     int i;
     X(plan_awake)(ego->cld, wakefulness);
     for (i = 0; i < ego->nthr; ++i)
	  X(plan_awake)(ego->cldws[i], wakefulness);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     int i;
     X(plan_destroy_internal)(ego->cld);
     for (i = 0; i < ego->nthr; ++i)
	  X(plan_destroy_internal)(ego->cldws[i]);
     X(ifree)(ego->cldws);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     int i;
     p->print(p, "(rdft-thr-ct-%s-x%d/%D",
	      ego->super.apply == apply_dit ? "dit" : "dif",
	      ego->nthr, ego->r);
     for (i = 0; i < ego->nthr; ++i)
          if (i == 0 || (ego->cldws[i] != ego->cldws[i-1] &&
                         (i <= 1 || ego->cldws[i] != ego->cldws[i-2])))
               p->print(p, "%(%p%)", ego->cldws[i]);
     p->print(p, "%(%p%))", ego->cld);
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const hc2hc_solver *ego = (const hc2hc_solver *) ego_;
     const problem_rdft *p;
     P *pln = 0;
     plan *cld = 0, **cldws = 0;
     INT n, r, m, v, ivs, ovs, mcount;
     int i, nthr, plnr_nthr_save;
     INT block_size;
     iodim *d;

     static const plan_adt padt = {
	  X(rdft_solve), awake, print, destroy
     };

     if (plnr->nthr <= 1 || !X(hc2hc_applicable)(ego, p_, plnr))
          return (plan *) 0;

     p = (const problem_rdft *) p_;
     d = p->sz->dims;
     n = d[0].n;
     r = X(choose_radix)(ego->r, n);
     m = n / r;
     mcount = (m + 2) / 2;

     X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);

     block_size = (mcount + plnr->nthr - 1) / plnr->nthr;
     nthr = (int)((mcount + block_size - 1) / block_size);
     plnr_nthr_save = plnr->nthr;
     plnr->nthr = (plnr->nthr + nthr - 1) / nthr;

     cldws = (plan **) MALLOC(sizeof(plan *) * nthr, PLANS);
     for (i = 0; i < nthr; ++i) cldws[i] = (plan *) 0;

     switch (p->kind[0]) {
	 case R2HC:
	      for (i = 0; i < nthr; ++i) {
		   cldws[i] = ego->mkcldw(ego, 
					  R2HC, r, m, d[0].os, v, ovs, 
					  i*block_size, 
					  (i == nthr - 1) ? 
					  (mcount - i*block_size) : block_size,
					  p->O, plnr);
		   if (!cldws[i]) goto nada;
	      }

	      plnr->nthr = plnr_nthr_save;

	      cld = X(mkplan_d)(plnr, 
				X(mkproblem_rdft_d)(
				     X(mktensor_1d)(m, r * d[0].is, d[0].os),
				     X(mktensor_2d)(r, d[0].is, m * d[0].os,
						    v, ivs, ovs),
				     p->I, p->O, p->kind)
		   );
	      if (!cld) goto nada;

	      pln = MKPLAN_RDFT(P, &padt, apply_dit);
	      break;

	 case HC2R:
	      for (i = 0; i < nthr; ++i) {
		   cldws[i] = ego->mkcldw(ego, 
					  HC2R, r, m, d[0].is, v, ivs, 
					  i*block_size, 
					  (i == nthr - 1) ? 
					  (mcount - i*block_size) : block_size,
					  p->I, plnr);
		   if (!cldws[i]) goto nada;
	      }

	      plnr->nthr = plnr_nthr_save;

	      cld = X(mkplan_d)(plnr, 
				X(mkproblem_rdft_d)(
				     X(mktensor_1d)(m, d[0].is, r * d[0].os),
				     X(mktensor_2d)(r, m * d[0].is, d[0].os,
						    v, ivs, ovs),
				     p->I, p->O, p->kind)
		   );
	      if (!cld) goto nada;
	      
	      pln = MKPLAN_RDFT(P, &padt, apply_dif);
	      break;

	 default: 
	      A(0);
     }

     pln->cld = cld;
     pln->cldws = cldws;
     pln->nthr = nthr;
     pln->r = r;
     X(ops_zero)(&pln->super.super.ops);
     for (i = 0; i < nthr; ++i) {
          X(ops_add2)(&cldws[i]->ops, &pln->super.super.ops);
	  pln->super.super.could_prune_now_p |= cldws[i]->could_prune_now_p;
     }
     X(ops_add2)(&cld->ops, &pln->super.super.ops);
     return &(pln->super.super);

 nada:
     if (cldws) {
	  for (i = 0; i < nthr; ++i)
	       X(plan_destroy_internal)(cldws[i]);
	  X(ifree)(cldws);
     }
     X(plan_destroy_internal)(cld);
     return (plan *) 0;
}

hc2hc_solver *X(mksolver_hc2hc_threads)(size_t size, INT r, 
					hc2hc_mkinferior mkcldw)
{
     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
     hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt);
     slv->r = r;
     slv->mkcldw = mkcldw;
     return slv;
}