view src/fftw-3.3.5/rdft/rdft-dht.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 2cd0e3b3e1fd
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


/* Solve an R2HC/HC2R problem via post/pre processing of a DHT.  This
   is mainly useful because we can use Rader to compute DHTs of prime
   sizes.  It also allows us to express hc2r problems in terms of r2hc
   (via dht-r2hc), and to do hc2r problems without destroying the input. */

#include "rdft.h"

typedef struct {
     solver super;
} S;

typedef struct {
     plan_rdft super;
     plan *cld;
     INT is, os;
     INT n;
} P;

static void apply_r2hc(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     INT os;
     INT i, n;

     {
	  plan_rdft *cld = (plan_rdft *) ego->cld;
	  cld->apply((plan *) cld, I, O);
     }

     n = ego->n;
     os = ego->os;
     for (i = 1; i < n - i; ++i) {
	  E a, b;
	  a = K(0.5) * O[os * i];
	  b = K(0.5) * O[os * (n - i)];
	  O[os * i] = a + b;
#if FFT_SIGN == -1
	  O[os * (n - i)] = b - a;
#else
	  O[os * (n - i)] = a - b;
#endif
     }
}

/* hc2r, destroying input as usual */
static void apply_hc2r(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     INT is = ego->is;
     INT i, n = ego->n;

     for (i = 1; i < n - i; ++i) {
	  E a, b;
	  a = I[is * i];
	  b = I[is * (n - i)];
#if FFT_SIGN == -1
	  I[is * i] = a - b;
	  I[is * (n - i)] = a + b;
#else
	  I[is * i] = a + b;
	  I[is * (n - i)] = a - b;
#endif
     }

     {
	  plan_rdft *cld = (plan_rdft *) ego->cld;
	  cld->apply((plan *) cld, I, O);
     }
}

/* hc2r, without destroying input */
static void apply_hc2r_save(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     INT is = ego->is, os = ego->os;
     INT i, n = ego->n;

     O[0] = I[0];
     for (i = 1; i < n - i; ++i) {
	  E a, b;
	  a = I[is * i];
	  b = I[is * (n - i)];
#if FFT_SIGN == -1
	  O[os * i] = a - b;
	  O[os * (n - i)] = a + b;
#else
	  O[os * i] = a + b;
	  O[os * (n - i)] = a - b;
#endif
     }
     if (i == n - i)
	  O[os * i] = I[is * i];

     {
	  plan_rdft *cld = (plan_rdft *) ego->cld;
	  cld->apply((plan *) cld, O, O);
     }
}

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     X(plan_awake)(ego->cld, wakefulness);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(plan_destroy_internal)(ego->cld);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     p->print(p, "(%s-dht-%D%(%p%))", 
	      ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
	      ego->n, ego->cld);
}

static int applicable0(const solver *ego_, const problem *p_)
{
     const problem_rdft *p = (const problem_rdft *) p_;
     UNUSED(ego_);

     return (1
	     && p->sz->rnk == 1
	     && p->vecsz->rnk == 0
	     && (p->kind[0] == R2HC || p->kind[0] == HC2R)

	     /* hack: size-2 DHT etc. are defined as being equivalent
		to size-2 R2HC in problem.c, so we need this to prevent
		infinite loops for size 2 in EXHAUSTIVE mode: */
	     && p->sz->dims[0].n > 2
	  );
}

static int applicable(const solver *ego, const problem *p_, 
		      const planner *plnr)
{
     return (!NO_SLOWP(plnr) && applicable0(ego, p_));
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     P *pln;
     const problem_rdft *p;
     problem *cldp;
     plan *cld;

     static const plan_adt padt = {
	  X(rdft_solve), awake, print, destroy
     };

     if (!applicable(ego_, p_, plnr))
          return (plan *)0;

     p = (const problem_rdft *) p_;

     if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr))
	  cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT);
     else {
	  tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS);
	  cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT);
	  X(tensor_destroy)(sz);
     }
     cld = X(mkplan_d)(plnr, cldp);
     if (!cld) return (plan *)0;

     pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ? 
		       apply_r2hc : (NO_DESTROY_INPUTP(plnr) ?
				     apply_hc2r_save : apply_hc2r));
     pln->n = p->sz->dims[0].n;
     pln->is = p->sz->dims[0].is;
     pln->os = p->sz->dims[0].os;
     pln->cld = cld;
     
     pln->super.super.ops = cld->ops;
     pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
     pln->super.super.ops.add += 2 * ((pln->n - 1)/2);
     if (p->kind[0] == R2HC)
	  pln->super.super.ops.mul += 2 * ((pln->n - 1)/2);
     if (pln->super.apply == apply_hc2r_save)
	  pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2);

     return &(pln->super.super);
}

/* constructor */
static solver *mksolver(void)
{
     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     return &(slv->super);
}

void X(rdft_dht_register)(planner *p)
{
     REGISTER_SOLVER(p, mksolver());
}