view src/fftw-3.3.5/rdft/problem.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 2cd0e3b3e1fd
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


#include "rdft.h"
#include <stddef.h>

static void destroy(problem *ego_)
{
     problem_rdft *ego = (problem_rdft *) ego_;
#if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR)
     X(ifree0)(ego->kind);
#endif
     X(tensor_destroy2)(ego->vecsz, ego->sz);
     X(ifree)(ego_);
}

static void kind_hash(md5 *m, const rdft_kind *kind, int rnk)
{
     int i;
     for (i = 0; i < rnk; ++i)
	  X(md5int)(m, kind[i]);
}

static void hash(const problem *p_, md5 *m)
{
     const problem_rdft *p = (const problem_rdft *) p_;
     X(md5puts)(m, "rdft");
     X(md5int)(m, p->I == p->O);
     kind_hash(m, p->kind, p->sz->rnk);
     X(md5int)(m, X(ialignment_of)(p->I));
     X(md5int)(m, X(ialignment_of)(p->O));
     X(tensor_md5)(m, p->sz);
     X(tensor_md5)(m, p->vecsz);
}

static void recur(const iodim *dims, int rnk, R *I)
{
     if (rnk == RNK_MINFTY)
          return;
     else if (rnk == 0)
          I[0] = K(0.0);
     else if (rnk > 0) {
          INT i, n = dims[0].n, is = dims[0].is;

	  if (rnk == 1) {
	       /* this case is redundant but faster */
	       for (i = 0; i < n; ++i)
		    I[i * is] = K(0.0);
	  } else {
	       for (i = 0; i < n; ++i)
		    recur(dims + 1, rnk - 1, I + i * is);
	  }
     }
}

void X(rdft_zerotens)(tensor *sz, R *I)
{
     recur(sz->dims, sz->rnk, I);
}

#define KSTR_LEN 8

const char *X(rdft_kind_str)(rdft_kind kind)
{
     static const char kstr[][KSTR_LEN] = {
	  "r2hc", "r2hc01", "r2hc10", "r2hc11",
	  "hc2r", "hc2r01", "hc2r10", "hc2r11",
	  "dht",
	  "redft00", "redft01", "redft10", "redft11",
	  "rodft00", "rodft01", "rodft10", "rodft11"
     };
     A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN);
     return kstr[kind];
}

static void print(const problem *ego_, printer *p)
{
     const problem_rdft *ego = (const problem_rdft *) ego_;
     int i;
     p->print(p, "(rdft %d %D %T %T", 
	      X(ialignment_of)(ego->I),
	      (INT)(ego->O - ego->I), 
	      ego->sz,
	      ego->vecsz);
     for (i = 0; i < ego->sz->rnk; ++i)
	  p->print(p, " %d", (int)ego->kind[i]);
     p->print(p, ")");
}

static void zero(const problem *ego_)
{
     const problem_rdft *ego = (const problem_rdft *) ego_;
     tensor *sz = X(tensor_append)(ego->vecsz, ego->sz);
     X(rdft_zerotens)(sz, UNTAINT(ego->I));
     X(tensor_destroy)(sz);
}

static const problem_adt padt =
{
     PROBLEM_RDFT,
     hash,
     zero,
     print,
     destroy
};

/* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be
   eliminated.  REDFT/RODFT unit dimensions often have factors of 2.0
   and suchlike from normalization and phases, although in principle
   these constant factors from different dimensions could be combined. */
static int nontrivial(const iodim *d, rdft_kind kind)
{
     return (d->n > 1 || kind == R2HC11 || kind == HC2R11
	     || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01));
}

problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
			   R *I, R *O, const rdft_kind *kind)
{
     problem_rdft *ego;
     int rnk = sz->rnk;
     int i;

     A(X(tensor_kosherp)(sz));
     A(X(tensor_kosherp)(vecsz));
     A(FINITE_RNK(sz->rnk));

     if (UNTAINT(I) == UNTAINT(O))
	  I = O = JOIN_TAINT(I, O);

     if (I == O && !X(tensor_inplace_locations)(sz, vecsz))
	  return X(mkproblem_unsolvable)();

     for (i = rnk = 0; i < sz->rnk; ++i) {
          A(sz->dims[i].n > 0);
          if (nontrivial(sz->dims + i, kind[i]))
               ++rnk;
     }

#if defined(STRUCT_HACK_KR)
     ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
					 + sizeof(rdft_kind)
					 * (rnk > 0 ? rnk - 1u : 0u), &padt);
#elif defined(STRUCT_HACK_C99)
     ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
					 + sizeof(rdft_kind) * (unsigned)rnk, &padt);
#else
     ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt);
     ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * (unsigned)rnk, PROBLEMS);
#endif

     /* do compression and sorting as in X(tensor_compress), but take
	transform kind into account (sigh) */
     ego->sz = X(mktensor)(rnk);
     for (i = rnk = 0; i < sz->rnk; ++i) {
          if (nontrivial(sz->dims + i, kind[i])) {
	       ego->kind[rnk] = kind[i];
               ego->sz->dims[rnk++] = sz->dims[i];
	  }
     }
     for (i = 0; i + 1 < rnk; ++i) {
	  int j;
	  for (j = i + 1; j < rnk; ++j)
	       if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) {
		    iodim dswap;
		    rdft_kind kswap;
		    dswap = ego->sz->dims[i];
		    ego->sz->dims[i] = ego->sz->dims[j];
		    ego->sz->dims[j] = dswap;
		    kswap = ego->kind[i];
		    ego->kind[i] = ego->kind[j];
		    ego->kind[j] = kswap;
	       }
     }

     for (i = 0; i < rnk; ++i)
	  if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00
					  || ego->kind[i] == DHT
					  || ego->kind[i] == HC2R))
	       ego->kind[i] = R2HC; /* size-2 transforms are equivalent */

     ego->vecsz = X(tensor_compress_contiguous)(vecsz);
     ego->I = I;
     ego->O = O;

     A(FINITE_RNK(ego->sz->rnk));

     return &(ego->super);
}

/* Same as X(mkproblem_rdft), but also destroy input tensors. */
problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
			     R *I, R *O, const rdft_kind *kind)
{
     problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind);
     X(tensor_destroy2)(vecsz, sz);
     return p;
}

/* As above, but for rnk <= 1 only and takes a scalar kind parameter */
problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
			     R *I, R *O, rdft_kind kind)
{
     A(sz->rnk <= 1);
     return X(mkproblem_rdft)(sz, vecsz, I, O, &kind);
}

problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
			       R *I, R *O, rdft_kind kind)
{
     A(sz->rnk <= 1);
     return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind);
}

/* create a zero-dimensional problem */
problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O)
{
     return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O, 
				(const rdft_kind *)0);
}