view src/fftw-3.3.5/rdft/direct-r2c.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 2cd0e3b3e1fd
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


/* direct RDFT solver, using r2c codelets */

#include "rdft.h"

typedef struct {
     solver super;
     const kr2c_desc *desc;
     kr2c k;
     int bufferedp;
} S;

typedef struct {
     plan_rdft super;

     stride rs, csr, csi;
     stride brs, bcsr, bcsi;
     INT n, vl, rs0, ivs, ovs, ioffset, bioffset;
     kr2c k;
     const S *slv;
} P;

/*************************************************************
  Nonbuffered code
 *************************************************************/
static void apply_r2hc(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     ASSERT_ALIGNED_DOUBLE;
     ego->k(I, I + ego->rs0, O, O + ego->ioffset, 
	    ego->rs, ego->csr, ego->csi,
	    ego->vl, ego->ivs, ego->ovs);
}

static void apply_hc2r(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     ASSERT_ALIGNED_DOUBLE;
     ego->k(O, O + ego->rs0, I, I + ego->ioffset, 
	    ego->rs, ego->csr, ego->csi,
	    ego->vl, ego->ivs, ego->ovs);
}

/*************************************************************
  Buffered code
 *************************************************************/
/* should not be 2^k to avoid associativity conflicts */
static INT compute_batchsize(INT radix)
{
     /* round up to multiple of 4 */
     radix += 3;
     radix &= -4;

     return (radix + 2);
}

static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz)
{
     X(cpy2d_ci)(I, buf,
		 ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1),
		 batchsz, ego->ivs, 1, 1);

     if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) {
	  /* transform directly to output */
	  ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), 
		 O, O + ego->ioffset, 
		 ego->brs, ego->csr, ego->csi,
		 batchsz, 1, ego->ovs);
     } else {
	  /* transform to buffer and copy back */
	  ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), 
		 buf, buf + ego->bioffset, 
		 ego->brs, ego->bcsr, ego->bcsi,
		 batchsz, 1, 1);
	  X(cpy2d_co)(buf, O,
		      ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1),  
		      batchsz, 1, ego->ovs, 1);
     }
}

static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz)
{
     if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) {
	  /* transform directly from input */
	  ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
		 I, I + ego->ioffset, 
		 ego->brs, ego->csr, ego->csi,
		 batchsz, ego->ivs, 1);
     } else {
	  /* copy into buffer and transform in place */
	  X(cpy2d_ci)(I, buf,
		      ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1),
		      batchsz, ego->ivs, 1, 1);
	  ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
		 buf, buf + ego->bioffset, 
		 ego->brs, ego->bcsr, ego->bcsi,
		 batchsz, 1, 1);
     }
     X(cpy2d_co)(buf, O,
		 ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0,
		 batchsz, 1, ego->ovs, 1);
}

static void iterate(const P *ego, R *I, R *O,
		    void (*dobatch)(const P *ego, R *I, R *O, 
				    R *buf, INT batchsz))
{
     R *buf;
     INT vl = ego->vl;
     INT n = ego->n;
     INT i;
     INT batchsz = compute_batchsize(n);
     size_t bufsz = n * batchsz * sizeof(R);

     BUF_ALLOC(R *, buf, bufsz);

     for (i = 0; i < vl - batchsz; i += batchsz) {
	  dobatch(ego, I, O, buf, batchsz);
	  I += batchsz * ego->ivs;
	  O += batchsz * ego->ovs;
     }
     dobatch(ego, I, O, buf, vl - i);

     BUF_FREE(buf, bufsz);
}

static void apply_buf_r2hc(const plan *ego_, R *I, R *O)
{
     iterate((const P *) ego_, I, O, dobatch_r2hc);
}

static void apply_buf_hc2r(const plan *ego_, R *I, R *O)
{
     iterate((const P *) ego_, I, O, dobatch_hc2r);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(stride_destroy)(ego->rs);
     X(stride_destroy)(ego->csr);
     X(stride_destroy)(ego->csi);
     X(stride_destroy)(ego->brs);
     X(stride_destroy)(ego->bcsr);
     X(stride_destroy)(ego->bcsi);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     const S *s = ego->slv;

     if (ego->slv->bufferedp)
	  p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")", 
		   X(rdft_kind_str)(s->desc->genus->kind), 
		   /* hack */ WS(ego->bcsr, 1), ego->n, 
		   ego->vl, s->desc->nam);

     else 
	  p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")", 
		   X(rdft_kind_str)(s->desc->genus->kind), ego->n, 
		   ego->vl, s->desc->nam);
}

static INT ioffset(rdft_kind kind, INT sz, INT s)
{
     return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1)));
}

static int applicable(const solver *ego_, const problem *p_)
{
     const S *ego = (const S *) ego_;
     const kr2c_desc *desc = ego->desc;
     const problem_rdft *p = (const problem_rdft *) p_;
     INT vl, ivs, ovs;

     return (
	  1
	  && p->sz->rnk == 1
	  && p->vecsz->rnk <= 1
	  && p->sz->dims[0].n == desc->n
	  && p->kind[0] == desc->genus->kind

	  /* check strides etc */
	  && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)

	  && (0
	      /* can operate out-of-place */
	      || p->I != p->O

	      /* computing one transform */
	      || vl == 1

	      /* can operate in-place as long as strides are the same */
	      || X(tensor_inplace_strides2)(p->sz, p->vecsz)
	       )
	  );
}

static int applicable_buf(const solver *ego_, const problem *p_)
{
     const S *ego = (const S *) ego_;
     const kr2c_desc *desc = ego->desc;
     const problem_rdft *p = (const problem_rdft *) p_;
     INT vl, ivs, ovs, batchsz;

     return (
	  1
	  && p->sz->rnk == 1
	  && p->vecsz->rnk <= 1
	  && p->sz->dims[0].n == desc->n
	  && p->kind[0] == desc->genus->kind

	  /* check strides etc */
	  && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)

	  && (batchsz = compute_batchsize(desc->n), 1)

	  && (0
	      /* can operate out-of-place */
	      || p->I != p->O

	      /* can operate in-place as long as strides are the same */
	      || X(tensor_inplace_strides2)(p->sz, p->vecsz)

	      /* can do it if the problem fits in the buffer, no matter
		 what the strides are */
	      || vl <= batchsz
	       )
	  );
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const S *ego = (const S *) ego_;
     P *pln;
     const problem_rdft *p;
     iodim *d;
     INT rs, cs, b, n;

     static const plan_adt padt = {
	  X(rdft_solve), X(null_awake), print, destroy
     };

     UNUSED(plnr);

     if (ego->bufferedp) {
	  if (!applicable_buf(ego_, p_))
	       return (plan *)0;
     } else {
	  if (!applicable(ego_, p_))
	       return (plan *)0;
     }

     p = (const problem_rdft *) p_;

     if (R2HC_KINDP(p->kind[0])) {
	  rs = p->sz->dims[0].is; cs = p->sz->dims[0].os;
	  pln = MKPLAN_RDFT(P, &padt, 
			    ego->bufferedp ? apply_buf_r2hc : apply_r2hc);
     } else {
	  rs = p->sz->dims[0].os; cs = p->sz->dims[0].is;
	  pln = MKPLAN_RDFT(P, &padt, 
			    ego->bufferedp ? apply_buf_hc2r : apply_hc2r);
     }

     d = p->sz->dims;
     n = d[0].n;

     pln->k = ego->k;
     pln->n = n;

     pln->rs0 = rs;
     pln->rs = X(mkstride)(n, 2 * rs);
     pln->csr = X(mkstride)(n, cs);
     pln->csi = X(mkstride)(n, -cs);
     pln->ioffset = ioffset(p->kind[0], n, cs);

     b = compute_batchsize(n);
     pln->brs = X(mkstride)(n, 2 * b);
     pln->bcsr = X(mkstride)(n, b);
     pln->bcsi = X(mkstride)(n, -b);
     pln->bioffset = ioffset(p->kind[0], n, b);

     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);

     pln->slv = ego;
     X(ops_zero)(&pln->super.super.ops);

     X(ops_madd2)(pln->vl / ego->desc->genus->vl,
		  &ego->desc->ops,
		  &pln->super.super.ops);

     if (ego->bufferedp) 
	  pln->super.super.ops.other += 2 * n * pln->vl;

     pln->super.super.could_prune_now_p = !ego->bufferedp;

     return &(pln->super.super);
}

/* constructor */
static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp)
{
     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     slv->k = k;
     slv->desc = desc;
     slv->bufferedp = bufferedp;
     return &(slv->super);
}

solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc)
{
     return mksolver(k, desc, 0);
}

solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc)
{
     return mksolver(k, desc, 1);
}