view src/fftw-3.3.5/libbench2/verify-rdft2.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 2cd0e3b3e1fd
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


#include "verify.h"

/* copy real A into real B, using output stride of A and input stride of B */
typedef struct {
     dotens2_closure k;
     R *ra;
     R *rb;
} cpyr_closure;

static void cpyr0(dotens2_closure *k_,
                  int indxa, int ondxa, int indxb, int ondxb)
{
     cpyr_closure *k = (cpyr_closure *)k_;
     k->rb[indxb] = k->ra[ondxa];
     UNUSED(indxa); UNUSED(ondxb);
}

static void cpyr(R *ra, const bench_tensor *sza, 
		 R *rb, const bench_tensor *szb)
{
     cpyr_closure k;
     k.k.apply = cpyr0;
     k.ra = ra; k.rb = rb;
     bench_dotens2(sza, szb, &k.k);
}

/* copy unpacked halfcomplex A[n] into packed-complex B[n], using output stride
   of A and input stride of B.  Only copies non-redundant half; other
   half must be copied via mkhermitian. */
typedef struct {
     dotens2_closure k;
     int n;
     int as;
     int scalea;
     R *ra, *ia;
     R *rb, *ib;
} cpyhc2_closure;

static void cpyhc20(dotens2_closure *k_, 
		    int indxa, int ondxa, int indxb, int ondxb)
{
     cpyhc2_closure *k = (cpyhc2_closure *)k_;
     int i, n = k->n;
     int scalea = k->scalea;
     int as = k->as * scalea;
     R *ra = k->ra + ondxa * scalea, *ia = k->ia + ondxa * scalea;
     R *rb = k->rb + indxb, *ib = k->ib + indxb;
     UNUSED(indxa); UNUSED(ondxb);

     for (i = 0; i < n/2 + 1; ++i) {
	  rb[2*i] = ra[as*i];
	  ib[2*i] = ia[as*i];
     }
}

static void cpyhc2(R *ra, R *ia,
		   const bench_tensor *sza, const bench_tensor *vecsza,
		   int scalea,
		   R *rb, R *ib, const bench_tensor *szb)
{
     cpyhc2_closure k;
     BENCH_ASSERT(sza->rnk <= 1);
     k.k.apply = cpyhc20;
     k.n = tensor_sz(sza);
     k.scalea = scalea;
     if (!BENCH_FINITE_RNK(sza->rnk) || sza->rnk == 0)
	  k.as = 0;
     else
	  k.as = sza->dims[0].os;
     k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
     bench_dotens2(vecsza, szb, &k.k);
}

/* icpyhc2 is the inverse of cpyhc2 */

static void icpyhc20(dotens2_closure *k_, 
		     int indxa, int ondxa, int indxb, int ondxb)
{
     cpyhc2_closure *k = (cpyhc2_closure *)k_;
     int i, n = k->n;
     int scalea = k->scalea;
     int as = k->as * scalea;
     R *ra = k->ra + indxa * scalea, *ia = k->ia + indxa * scalea;
     R *rb = k->rb + ondxb, *ib = k->ib + ondxb;
     UNUSED(ondxa); UNUSED(indxb);

     for (i = 0; i < n/2 + 1; ++i) {
	  ra[as*i] = rb[2*i];
	  ia[as*i] = ib[2*i];
     }
}

static void icpyhc2(R *ra, R *ia, 
		    const bench_tensor *sza, const bench_tensor *vecsza,
		    int scalea,
		    R *rb, R *ib, const bench_tensor *szb)
{
     cpyhc2_closure k;
     BENCH_ASSERT(sza->rnk <= 1);
     k.k.apply = icpyhc20;
     k.n = tensor_sz(sza);
     k.scalea = scalea;
     if (!BENCH_FINITE_RNK(sza->rnk) || sza->rnk == 0)
	  k.as = 0;
     else
	  k.as = sza->dims[0].is;
     k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
     bench_dotens2(vecsza, szb, &k.k);
}

typedef struct {
     dofft_closure k;
     bench_problem *p;
} dofft_rdft2_closure;

static void rdft2_apply(dofft_closure *k_, 
			bench_complex *in, bench_complex *out)
{
     dofft_rdft2_closure *k = (dofft_rdft2_closure *)k_;
     bench_problem *p = k->p;
     bench_tensor *totalsz, *pckdsz, *totalsz_swap, *pckdsz_swap;
     bench_tensor *probsz2, *totalsz2, *pckdsz2;
     bench_tensor *probsz2_swap, *totalsz2_swap, *pckdsz2_swap;
     bench_real *ri, *ii, *ro, *io;
     int n2, totalscale;

     totalsz = tensor_append(p->vecsz, p->sz);
     pckdsz = verify_pack(totalsz, 2);
     n2 = tensor_sz(totalsz);
     if (BENCH_FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0)
	  n2 = (n2 / p->sz->dims[p->sz->rnk - 1].n) * 
	       (p->sz->dims[p->sz->rnk - 1].n / 2 + 1);
     ri = (bench_real *) p->in;
     ro = (bench_real *) p->out;

     if (BENCH_FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0 && n2 > 0) {
	  probsz2 = tensor_copy_sub(p->sz, p->sz->rnk - 1, 1);
	  totalsz2 = tensor_copy_sub(totalsz, 0, totalsz->rnk - 1);
	  pckdsz2 = tensor_copy_sub(pckdsz, 0, pckdsz->rnk - 1);
     }
     else {
	  probsz2 = mktensor(0);
	  totalsz2 = tensor_copy(totalsz);
	  pckdsz2 = tensor_copy(pckdsz);
     }

     totalsz_swap = tensor_copy_swapio(totalsz);
     pckdsz_swap = tensor_copy_swapio(pckdsz);
     totalsz2_swap = tensor_copy_swapio(totalsz2);
     pckdsz2_swap = tensor_copy_swapio(pckdsz2);
     probsz2_swap = tensor_copy_swapio(probsz2);

     /* confusion: the stride is the distance between complex elements
	when using interleaved format, but it is the distance between
	real elements when using split format */
     if (p->split) {
	  ii = p->ini ? (bench_real *) p->ini : ri + n2;
	  io = p->outi ? (bench_real *) p->outi : ro + n2;
	  totalscale = 1;
     } else {
	  ii = p->ini ? (bench_real *) p->ini : ri + 1;
	  io = p->outi ? (bench_real *) p->outi : ro + 1;
	  totalscale = 2;
     }

     if (p->sign < 0) { /* R2HC */
	  int N, vN, i;
	  cpyr(&c_re(in[0]), pckdsz, ri, totalsz);
	  after_problem_rcopy_from(p, ri);
	  doit(1, p);
	  after_problem_hccopy_to(p, ro, io);
	  if (k->k.recopy_input)
	       cpyr(ri, totalsz_swap, &c_re(in[0]), pckdsz_swap);
	  cpyhc2(ro, io, probsz2, totalsz2, totalscale,
		 &c_re(out[0]), &c_im(out[0]), pckdsz2);
	  N = tensor_sz(p->sz);
	  vN = tensor_sz(p->vecsz);
	  for (i = 0; i < vN; ++i)
	       mkhermitian(out + i*N, p->sz->rnk, p->sz->dims, 1);
     }
     else { /* HC2R */
	  icpyhc2(ri, ii, probsz2, totalsz2, totalscale,
		  &c_re(in[0]), &c_im(in[0]), pckdsz2);
	  after_problem_hccopy_from(p, ri, ii);
	  doit(1, p);
	  after_problem_rcopy_to(p, ro);
	  if (k->k.recopy_input)
	       cpyhc2(ri, ii, probsz2_swap, totalsz2_swap, totalscale,
		      &c_re(in[0]), &c_im(in[0]), pckdsz2_swap);
	  mkreal(out, tensor_sz(pckdsz));
	  cpyr(ro, totalsz, &c_re(out[0]), pckdsz);
     }

     tensor_destroy(totalsz);
     tensor_destroy(pckdsz);
     tensor_destroy(totalsz_swap);
     tensor_destroy(pckdsz_swap);
     tensor_destroy(probsz2);
     tensor_destroy(totalsz2);
     tensor_destroy(pckdsz2);
     tensor_destroy(probsz2_swap);
     tensor_destroy(totalsz2_swap);
     tensor_destroy(pckdsz2_swap);
}

void verify_rdft2(bench_problem *p, int rounds, double tol, errors *e)
{
     C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
     int n, vecn, N;
     dofft_rdft2_closure k;

     BENCH_ASSERT(p->kind == PROBLEM_REAL);

     if (!BENCH_FINITE_RNK(p->sz->rnk) || !BENCH_FINITE_RNK(p->vecsz->rnk))
	  return;      /* give up */

     k.k.apply = rdft2_apply;
     k.k.recopy_input = 0;
     k.p = p;

     if (rounds == 0)
	  rounds = 20;  /* default value */

     n = tensor_sz(p->sz);
     vecn = tensor_sz(p->vecsz);
     N = n * vecn;

     inA = (C *) bench_malloc(N * sizeof(C));
     inB = (C *) bench_malloc(N * sizeof(C));
     inC = (C *) bench_malloc(N * sizeof(C));
     outA = (C *) bench_malloc(N * sizeof(C));
     outB = (C *) bench_malloc(N * sizeof(C));
     outC = (C *) bench_malloc(N * sizeof(C));
     tmp = (C *) bench_malloc(N * sizeof(C));

     e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC, 
		    tmp, rounds, tol);
     e->l = linear(&k.k, 1, N, inA, inB, inC, outA, outB, outC,
		   tmp, rounds, tol);

     e->s = 0.0;
     if (p->sign < 0)
	  e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
				     inA, inB, outA, outB, 
				     tmp, rounds, tol, TIME_SHIFT));
     else
	  e->s = dmax(e->s, tf_shift(&k.k, 1, p->sz, n, vecn, p->sign,
				     inA, inB, outA, outB, 
				     tmp, rounds, tol, FREQ_SHIFT));
     
     if (!p->in_place && !p->destroy_input)
	  preserves_input(&k.k, p->sign < 0 ? mkreal : mkhermitian1,
			  N, inA, inB, outB, rounds);

     bench_free(tmp);
     bench_free(outC);
     bench_free(outB);
     bench_free(outA);
     bench_free(inC);
     bench_free(inB);
     bench_free(inA);
}

void accuracy_rdft2(bench_problem *p, int rounds, int impulse_rounds,
		    double t[6])
{
     dofft_rdft2_closure k;
     int n;
     C *a, *b;

     BENCH_ASSERT(p->kind == PROBLEM_REAL);
     BENCH_ASSERT(p->sz->rnk == 1);
     BENCH_ASSERT(p->vecsz->rnk == 0);

     k.k.apply = rdft2_apply;
     k.k.recopy_input = 0;
     k.p = p;
     n = tensor_sz(p->sz);

     a = (C *) bench_malloc(n * sizeof(C));
     b = (C *) bench_malloc(n * sizeof(C));
     accuracy_test(&k.k, p->sign < 0 ? mkreal : mkhermitian1, p->sign, 
		   n, a, b, rounds, impulse_rounds, t);
     bench_free(b);
     bench_free(a);
}