view src/fftw-3.3.5/kernel/tensor7.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 2cd0e3b3e1fd
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


#include "ifftw.h"

static int signof(INT x)
{
     if (x < 0) return -1;
     if (x == 0) return 0;
     /* if (x > 0) */ return 1;
}

/* total order among iodim's */
int X(dimcmp)(const iodim *a, const iodim *b)
{
     INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);
     INT sao = X(iabs)(a->os), sbo = X(iabs)(b->os);
     INT sam = X(imin)(sai, sao), sbm = X(imin)(sbi, sbo);

     /* in descending order of min{istride, ostride} */
     if (sam != sbm)
	  return signof(sbm - sam);

     /* in case of a tie, in descending order of istride */
     if (sbi != sai)
          return signof(sbi - sai);

     /* in case of a tie, in descending order of ostride */
     if (sbo != sao)
          return signof(sbo - sao);

     /* in case of a tie, in ascending order of n */
     return signof(a->n - b->n);
}

static void canonicalize(tensor *x)
{
     if (x->rnk > 1) {
	  qsort(x->dims, (unsigned)x->rnk, sizeof(iodim),
		(int (*)(const void *, const void *))X(dimcmp));
     }
}

static int compare_by_istride(const iodim *a, const iodim *b)
{
     INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);

     /* in descending order of istride */
     return signof(sbi - sai);
}

static tensor *really_compress(const tensor *sz)
{
     int i, rnk;
     tensor *x;

     A(FINITE_RNK(sz->rnk));
     for (i = rnk = 0; i < sz->rnk; ++i) {
          A(sz->dims[i].n > 0);
          if (sz->dims[i].n != 1)
               ++rnk;
     }

     x = X(mktensor)(rnk);
     for (i = rnk = 0; i < sz->rnk; ++i) {
          if (sz->dims[i].n != 1)
               x->dims[rnk++] = sz->dims[i];
     }
     return x;
}

/* Like tensor_copy, but eliminate n == 1 dimensions, which
   never affect any transform or transform vector.
 
   Also, we sort the tensor into a canonical order of decreasing
   strides (see X(dimcmp) for an exact definition).  In general,
   processing a loop/array in order of decreasing stride will improve
   locality.  Both forward and backwards traversal of the tensor are
   considered e.g. by vrank-geq1, so sorting in increasing
   vs. decreasing order is not really important. */
tensor *X(tensor_compress)(const tensor *sz)
{
     tensor *x = really_compress(sz);
     canonicalize(x);
     return x;
}

/* Return whether the strides of a and b are such that they form an
   effective contiguous 1d array.  Assumes that a.is >= b.is. */
static int strides_contig(iodim *a, iodim *b)
{
     return (a->is == b->is * b->n && a->os == b->os * b->n);
}

/* Like tensor_compress, but also compress into one dimension any
   group of dimensions that form a contiguous block of indices with
   some stride.  (This can safely be done for transform vector sizes.) */
tensor *X(tensor_compress_contiguous)(const tensor *sz)
{
     int i, rnk;
     tensor *sz2, *x;

     if (X(tensor_sz)(sz) == 0) 
	  return X(mktensor)(RNK_MINFTY);

     sz2 = really_compress(sz);
     A(FINITE_RNK(sz2->rnk));

     if (sz2->rnk <= 1) { /* nothing to compress. */ 
	  if (0) {
	       /* this call is redundant, because "sz->rnk <= 1" implies
		  that the tensor is already canonical, but I am writing
		  it explicitly because "logically" we need to canonicalize
		  the tensor before returning. */
	       canonicalize(sz2);
	  }
          return sz2;
     }

     /* sort in descending order of |istride|, so that compressible
	dimensions appear contigously */
     qsort(sz2->dims, (unsigned)sz2->rnk, sizeof(iodim),
		(int (*)(const void *, const void *))compare_by_istride);

     /* compute what the rank will be after compression */
     for (i = rnk = 1; i < sz2->rnk; ++i)
          if (!strides_contig(sz2->dims + i - 1, sz2->dims + i))
               ++rnk;

     /* merge adjacent dimensions whenever possible */
     x = X(mktensor)(rnk);
     x->dims[0] = sz2->dims[0];
     for (i = rnk = 1; i < sz2->rnk; ++i) {
          if (strides_contig(sz2->dims + i - 1, sz2->dims + i)) {
               x->dims[rnk - 1].n *= sz2->dims[i].n;
               x->dims[rnk - 1].is = sz2->dims[i].is;
               x->dims[rnk - 1].os = sz2->dims[i].os;
          } else {
               A(rnk < x->rnk);
               x->dims[rnk++] = sz2->dims[i];
          }
     }

     X(tensor_destroy)(sz2);

     /* reduce to canonical form */
     canonicalize(x);
     return x;
}

/* The inverse of X(tensor_append): splits the sz tensor into
   tensor a followed by tensor b, where a's rank is arnk. */
void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b)
{
     A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk));

     *a = X(tensor_copy_sub)(sz, 0, arnk);
     *b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk);
}

/* TRUE if the two tensors are equal */
int X(tensor_equal)(const tensor *a, const tensor *b)
{
     if (a->rnk != b->rnk)
	  return 0;

     if (FINITE_RNK(a->rnk)) {
	  int i;
	  for (i = 0; i < a->rnk; ++i) 
	       if (0
		   || a->dims[i].n != b->dims[i].n
		   || a->dims[i].is != b->dims[i].is
		   || a->dims[i].os != b->dims[i].os
		    )
		    return 0;
     }

     return 1;
}

/* TRUE if the sets of input and output locations described by
   (append sz vecsz) are the same */
int X(tensor_inplace_locations)(const tensor *sz, const tensor *vecsz)
{
     tensor *t = X(tensor_append)(sz, vecsz);
     tensor *ti = X(tensor_copy_inplace)(t, INPLACE_IS);
     tensor *to = X(tensor_copy_inplace)(t, INPLACE_OS);
     tensor *tic = X(tensor_compress_contiguous)(ti);
     tensor *toc = X(tensor_compress_contiguous)(to);

     int retval = X(tensor_equal)(tic, toc);

     X(tensor_destroy)(t);
     X(tensor_destroy4)(ti, to, tic, toc);

     return retval;
}