view src/fftw-3.3.5/genfft/genutil.ml @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 2cd0e3b3e1fd
children
line wrap: on
line source
(*
 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 *)

(* utilities common to all generators *)
open Util

let choose_simd a b = if !Simdmagic.simd_mode then b else a

let unique_array n = array n (fun _ -> Unique.make ())
let unique_array_c n = 
  array n (fun _ -> 
    (Unique.make (), Unique.make ()))

let unique_v_array_c veclen n = 
  array veclen (fun _ ->
    unique_array_c n)

let locative_array_c n rarr iarr loc vs = 
  array n (fun i -> 
    let klass = Unique.make () in
    let (rloc, iloc) = loc i in
    (Variable.make_locative rloc klass rarr i vs,
     Variable.make_locative iloc klass iarr i vs))

let locative_v_array_c veclen n rarr iarr loc vs = 
  array veclen (fun v ->
    array n (fun i -> 
      let klass = Unique.make () in
      let (rloc, iloc) = loc v i in
      (Variable.make_locative rloc klass (rarr v) i vs,
       Variable.make_locative iloc klass (iarr v) i vs)))

let temporary_array n = 
  array n (fun i -> Variable.make_temporary ())

let temporary_array_c n = 
  let tmpr = temporary_array n
  and tmpi = temporary_array n
  in 
  array n (fun i -> (tmpr i, tmpi i))

let temporary_v_array_c veclen n =
  array veclen (fun v -> temporary_array_c n)

let temporary_array_c n = 
  let tmpr = temporary_array n
  and tmpi = temporary_array n
  in 
  array n (fun i -> (tmpr i, tmpi i))

let load_c (vr, vi) = Complex.make (Expr.Load vr, Expr.Load vi)
let load_r (vr, vi) = Complex.make (Expr.Load vr, Expr.Num (Number.zero))

let twiddle_array nt w =
  array (nt/2) (fun i ->
    let stride = choose_simd (C.SInteger 1) (C.SConst "TWVL") 
    and klass = Unique.make () in
    let (refr, refi) = (C.array_subscript w stride (2 * i),
			C.array_subscript w stride (2 * i + 1))
    in
    let (kr, ki) = (Variable.make_constant klass refr,
		    Variable.make_constant klass refi)  
    in
    load_c (kr, ki))


let load_array_c n var = array n (fun i -> load_c (var i))
let load_array_r n var = array n (fun i -> load_r (var i))
let load_array_hc n var = 
  array n (fun i -> 
    if (i < n - i) then
      load_c (var i)
    else if (i > n - i) then
      Complex.times Complex.i (load_c (var (n - i)))
    else
      load_r (var i))

let load_v_array_c veclen n var =
  array veclen (fun v -> load_array_c n (var v))

let store_c (vr, vi) x = [Complex.store_real vr x; Complex.store_imag vi x]
let store_r (vr, vi) x = Complex.store_real vr x
let store_i (vr, vi) x = Complex.store_imag vi x

let assign_array_c n dst src =
  List.flatten
    (rmap (iota n)
       (fun i ->
	 let (ar, ai) = Complex.assign (dst i) (src i)
	 in [ar; ai]))
let assign_v_array_c veclen n dst src =
  List.flatten
    (rmap (iota veclen)
       (fun v ->
	 assign_array_c n (dst v) (src v)))

let vassign_v_array_c veclen n dst src =
  List.flatten
    (rmap (iota n) (fun i ->
      List.flatten
	(rmap (iota veclen)
	   (fun v ->
	     let (ar, ai) = Complex.assign (dst v i) (src v i)
	     in [ar; ai]))))

let store_array_r n dst src =
  rmap (iota n)
    (fun i -> store_r (dst i) (src i))

let store_array_c n dst src =
  List.flatten
    (rmap (iota n)
       (fun i -> store_c (dst i) (src i)))

let store_array_hc n dst src =
  List.flatten
    (rmap (iota n)
       (fun i -> 
	 if (i < n - i) then
	   store_c (dst i) (src i)
	 else if (i > n - i) then
	   []
	 else 
	   [store_r (dst i) (Complex.real (src i))]))
	

let store_v_array_c veclen n dst src =
  List.flatten
    (rmap (iota veclen)
       (fun v ->
	 store_array_c n (dst v) (src v)))


let elementwise f n a = array n (fun i -> f (a i))
let conj_array_c = elementwise Complex.conj
let real_array_c = elementwise Complex.real
let imag_array_c = elementwise Complex.imag

let elementwise_v f veclen n a = 
  array veclen (fun v ->
    array n (fun i -> f (a v i)))
let conj_v_array_c = elementwise_v Complex.conj
let real_v_array_c = elementwise_v Complex.real
let imag_v_array_c = elementwise_v Complex.imag


let transpose f i j = f j i
let symmetrize f i j = if i <= j then f i j else f j i

(* utilities for command-line parsing *)
let standard_arg_parse_fail _ = failwith "too many arguments"

let dump_dag alist =
  let fnam = !Magic.dag_dump_file in
  if (String.length fnam > 0) then
    let ochan = open_out fnam in
    begin
      To_alist.dump (output_string ochan) alist;
      close_out ochan;
    end

let dump_alist alist =
  let fnam = !Magic.alist_dump_file in
  if (String.length fnam > 0) then
    let ochan = open_out fnam in
    begin
      Expr.dump (output_string ochan) alist;
      close_out ochan;
    end

let dump_asched asched =
  let fnam = !Magic.asched_dump_file in
  if (String.length fnam > 0) then
    let ochan = open_out fnam in
    begin
      Annotate.dump (output_string ochan) asched;
      close_out ochan;
    end

(* utilities for optimization *)
let standard_scheduler dag =
  let optim = Algsimp.algsimp dag in
  let alist = To_alist.to_assignments optim in
  let _ = dump_alist alist in
  let _ = dump_dag alist in
    if !Magic.precompute_twiddles then
      Schedule.isolate_precomputations_and_schedule alist 
    else
      Schedule.schedule alist 

let standard_optimizer dag =
  let sched = standard_scheduler dag in
  let annot = Annotate.annotate [] sched in
  let _ = dump_asched annot in
  annot

let size = ref None
let sign = ref (-1)

let speclist = [
  "-n", Arg.Int(fun i -> size := Some i), " generate a codelet of size <n>";
  "-sign",
  Arg.Int(fun i -> 
    if (i > 0) then
      sign := 1
    else
      sign := (-1)),
  " sign of transform";
]

let check_size () =
  match !size with
  | Some i -> i
  | None -> failwith "must specify -n"

let expand_name name = if name = "" then "noname" else name

let declare_register_fcn name =
  if name = "" then
    "void NAME(planner *p)\n"
  else 
    "void " ^ (choose_simd "X" "XSIMD") ^
      "(codelet_" ^ name ^ ")(planner *p)\n"

let stringify name = 
  if name = "" then "STRINGIZE(NAME)" else 
    choose_simd ("\"" ^ name ^ "\"")
      ("XSIMD_STRING(\"" ^ name ^ "\")")

let parse user_speclist usage =
  Arg.parse
    (user_speclist @ speclist @ Magic.speclist @ Simdmagic.speclist)
    standard_arg_parse_fail
    usage

let rec list_to_c = function
    [] -> ""
  | [a] -> (string_of_int a)
  | a :: b -> (string_of_int a) ^ ", " ^ (list_to_c b)

let rec list_to_comma = function
  | [a; b] -> C.Comma (a, b)
  | a :: b -> C.Comma (a, list_to_comma b)
  | _ -> failwith "list_to_comma"


type stride = Stride_variable | Fixed_int of int | Fixed_string of string

let either_stride a b =
  match a with
    Fixed_int x -> C.SInteger x
  | Fixed_string x -> C.SConst x
  | _ -> b

let stride_fixed = function
    Stride_variable -> false
  | _ -> true

let arg_to_stride s =
  try
    Fixed_int (int_of_string s)
  with Failure "int_of_string" -> 
    Fixed_string s

let stride_to_solverparm = function
    Stride_variable -> "0"
  | Fixed_int x -> string_of_int x
  | Fixed_string x -> x

let stride_to_string s = function
    Stride_variable -> s
  | Fixed_int x -> string_of_int x
  | Fixed_string x -> x

(* output the command line *)
let cmdline () =
  List.fold_right (fun a b -> a ^ " " ^ b) (Array.to_list Sys.argv) ""

let unparse tree =
  "/* Generated by: " ^ (cmdline ()) ^ "*/\n\n" ^
  (C.print_cost tree) ^
  (if String.length !Magic.inklude > 0 
  then
    (Printf.sprintf "#include \"%s\"\n\n" !Magic.inklude)
  else "") ^
  (if !Simdmagic.simd_mode then
    Simd.unparse_function tree
  else
    C.unparse_function tree)

let finalize_fcn ast = 
  let mergedecls = function
      C.Block (d1, [C.Block (d2, s)]) -> C.Block (d1 @ d2, s)
    | x -> x
  and extract_constants =
    if !Simdmagic.simd_mode then 
      Simd.extract_constants 
    else
      C.extract_constants
	
  in mergedecls (C.Block (extract_constants ast, [ast; C.Simd_leavefun]))

let twinstr_to_string vl x =
  if !Simdmagic.simd_mode then 
    Twiddle.twinstr_to_simd_string vl x
  else
    Twiddle.twinstr_to_c_string x

let make_volatile_stride n x = 
  C.CCall ("MAKE_VOLATILE_STRIDE", C.Comma((C.Integer n), x))