view src/fftw-3.3.5/dft/indirect.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 2cd0e3b3e1fd
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */



/* solvers/plans for vectors of small DFT's that cannot be done
   in-place directly.  Use a rank-0 plan to rearrange the data
   before or after the transform.  Can also change an out-of-place
   plan into a copy + in-place (where the in-place transform
   is e.g. unit stride). */

/* FIXME: merge with rank-geq2.c(?), since this is just a special case
   of a rank split where the first/second transform has rank 0. */

#include "dft.h"

typedef problem *(*mkcld_t) (const problem_dft *p);

typedef struct {
     dftapply apply;
     problem *(*mkcld)(const problem_dft *p);
     const char *nam;
} ndrct_adt;

typedef struct {
     solver super;
     const ndrct_adt *adt;
} S;

typedef struct {
     plan_dft super;
     plan *cldcpy, *cld;
     const S *slv;
} P;

/*-----------------------------------------------------------------------*/
/* first rearrange, then transform */
static void apply_before(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
     const P *ego = (const P *) ego_;

     {
          plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
          cldcpy->apply(ego->cldcpy, ri, ii, ro, io);
     }
     {
          plan_dft *cld = (plan_dft *) ego->cld;
          cld->apply(ego->cld, ro, io, ro, io);
     }
}

static problem *mkcld_before(const problem_dft *p)
{
     return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_OS),
			       X(tensor_copy_inplace)(p->vecsz, INPLACE_OS),
			       p->ro, p->io, p->ro, p->io);
}

static const ndrct_adt adt_before =
{
     apply_before, mkcld_before, "dft-indirect-before"
};

/*-----------------------------------------------------------------------*/
/* first transform, then rearrange */

static void apply_after(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
     const P *ego = (const P *) ego_;

     {
          plan_dft *cld = (plan_dft *) ego->cld;
          cld->apply(ego->cld, ri, ii, ri, ii);
     }
     {
          plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
          cldcpy->apply(ego->cldcpy, ri, ii, ro, io);
     }
}

static problem *mkcld_after(const problem_dft *p)
{
     return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_IS),
			       X(tensor_copy_inplace)(p->vecsz, INPLACE_IS),
			       p->ri, p->ii, p->ri, p->ii);
}

static const ndrct_adt adt_after =
{
     apply_after, mkcld_after, "dft-indirect-after"
};

/*-----------------------------------------------------------------------*/
static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(plan_destroy_internal)(ego->cld);
     X(plan_destroy_internal)(ego->cldcpy);
}

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     X(plan_awake)(ego->cldcpy, wakefulness);
     X(plan_awake)(ego->cld, wakefulness);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     const S *s = ego->slv;
     p->print(p, "(%s%(%p%)%(%p%))", s->adt->nam, ego->cld, ego->cldcpy);
}

static int applicable0(const solver *ego_, const problem *p_,
		       const planner *plnr)
{
     const S *ego = (const S *) ego_;
     const problem_dft *p = (const problem_dft *) p_;
     return (1
	     && FINITE_RNK(p->vecsz->rnk)

	     /* problem must be a nontrivial transform, not just a copy */
	     && p->sz->rnk > 0

	     && (0

		 /* problem must be in-place & require some
		    rearrangement of the data; to prevent
		    infinite loops with indirect-transpose, we
		    further require that at least some transform
		    strides must decrease */
		 || (p->ri == p->ro
		     && !X(tensor_inplace_strides2)(p->sz, p->vecsz)
		     && X(tensor_strides_decrease)(
			  p->sz, p->vecsz,
			  ego->adt->apply == apply_after ? 
			  INPLACE_IS : INPLACE_OS))

		 /* or problem must be out of place, transforming
		    from stride 1/2 to bigger stride, for apply_after */
		 || (p->ri != p->ro && ego->adt->apply == apply_after
		     && !NO_DESTROY_INPUTP(plnr)
		     && X(tensor_min_istride)(p->sz) <= 2
		     && X(tensor_min_ostride)(p->sz) > 2)
			  
		 /* or problem must be out of place, transforming
		    to stride 1/2 from bigger stride, for apply_before */
		 || (p->ri != p->ro && ego->adt->apply == apply_before
		     && X(tensor_min_ostride)(p->sz) <= 2
		     && X(tensor_min_istride)(p->sz) > 2)
		  )
	  );
}

static int applicable(const solver *ego_, const problem *p_,
		      const planner *plnr)
{
     if (!applicable0(ego_, p_, plnr)) return 0;
     {
          const problem_dft *p = (const problem_dft *) p_;
	  if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0;
     }
     return 1;
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const problem_dft *p = (const problem_dft *) p_;
     const S *ego = (const S *) ego_;
     P *pln;
     plan *cld = 0, *cldcpy = 0;

     static const plan_adt padt = {
	  X(dft_solve), awake, print, destroy
     };

     if (!applicable(ego_, p_, plnr))
          return (plan *) 0;

     cldcpy =
	  X(mkplan_d)(plnr, 
		      X(mkproblem_dft_d)(X(mktensor_0d)(),
					 X(tensor_append)(p->vecsz, p->sz),
					 p->ri, p->ii, p->ro, p->io));

     if (!cldcpy) goto nada;

     cld = X(mkplan_f_d)(plnr, ego->adt->mkcld(p), NO_BUFFERING, 0, 0);
     if (!cld) goto nada;

     pln = MKPLAN_DFT(P, &padt, ego->adt->apply);
     pln->cld = cld;
     pln->cldcpy = cldcpy;
     pln->slv = ego;
     X(ops_add)(&cld->ops, &cldcpy->ops, &pln->super.super.ops);

     return &(pln->super.super);

 nada:
     X(plan_destroy_internal)(cld);
     X(plan_destroy_internal)(cldcpy);
     return (plan *)0;
}

static solver *mksolver(const ndrct_adt *adt)
{
     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     slv->adt = adt;
     return &(slv->super);
}

void X(dft_indirect_register)(planner *p)
{
     unsigned i;
     static const ndrct_adt *const adts[] = {
	  &adt_before, &adt_after
     };

     for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i)
          REGISTER_SOLVER(p, mksolver(adts[i]));
}