view src/fftw-3.3.5/dft/generic.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 2cd0e3b3e1fd
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include "dft.h"

typedef struct {
     solver super;
} S;

typedef struct {
     plan_dft super;
     twid *td;
     INT n, is, os;
} P;


static void cdot(INT n, const E *x, const R *w, 
		 R *or0, R *oi0, R *or1, R *oi1)
{
     INT i;

     E rr = x[0], ri = 0, ir = x[1], ii = 0; 
     x += 2;
     for (i = 1; i + i < n; ++i) {
	  rr += x[0] * w[0];
	  ir += x[1] * w[0];
	  ri += x[2] * w[1];
	  ii += x[3] * w[1];
	  x += 4; w += 2;
     }
     *or0 = rr + ii;
     *oi0 = ir - ri;
     *or1 = rr - ii;
     *oi1 = ir + ri;
}

static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o,
		    R *pr, R *pi)
{
     INT i;
     E sr, si;
     o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2;
     for (i = 1; i + i < n; ++i) {
	  sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]);
	  si += (o[1] = xi[i * xs] + xi[(n - i) * xs]);
	  o[2] = xr[i * xs] - xr[(n - i) * xs];
	  o[3] = xi[i * xs] - xi[(n - i) * xs];
	  o += 4;
     }
     *pr = sr;
     *pi = si;
}
		    
static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
     const P *ego = (const P *) ego_;
     INT i;
     INT n = ego->n, is = ego->is, os = ego->os;
     const R *W = ego->td->W;
     E *buf;
     size_t bufsz = n * 2 * sizeof(E);

     BUF_ALLOC(E *, buf, bufsz);
     hartley(n, ri, ii, is, buf, ro, io);

     for (i = 1; i + i < n; ++i) {
	  cdot(n, buf, W,
	       ro + i * os, io + i * os,
	       ro + (n - i) * os, io + (n - i) * os);
	  W += n - 1;
     }

     BUF_FREE(buf, bufsz);
}

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     static const tw_instr half_tw[] = {
	  { TW_HALF, 1, 0 },
	  { TW_NEXT, 1, 0 }
     };

     X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
		      (ego->n - 1) / 2);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;

     p->print(p, "(dft-generic-%D)", ego->n);
}

static int applicable(const solver *ego, const problem *p_, 
		      const planner *plnr)
{
     const problem_dft *p = (const problem_dft *) p_;
     UNUSED(ego);

     return (1
	     && p->sz->rnk == 1
	     && p->vecsz->rnk == 0
	     && (p->sz->dims[0].n % 2) == 1 
	     && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
	     && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
	     && X(is_prime)(p->sz->dims[0].n)
	  );
}

static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
{
     const problem_dft *p;
     P *pln;
     INT n;

     static const plan_adt padt = {
	  X(dft_solve), awake, print, X(plan_null_destroy)
     };

     if (!applicable(ego, p_, plnr))
          return (plan *)0;

     pln = MKPLAN_DFT(P, &padt, apply);

     p = (const problem_dft *) p_;
     pln->n = n = p->sz->dims[0].n;
     pln->is = p->sz->dims[0].is;
     pln->os = p->sz->dims[0].os;
     pln->td = 0;

     pln->super.super.ops.add = (n-1) * 5;
     pln->super.super.ops.mul = 0;
     pln->super.super.ops.fma = (n-1) * (n-1) ;
#if 0 /* these are nice pipelined sequential loads and should cost nothing */
     pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1));  /* approximate */
#endif

     return &(pln->super.super);
}

static solver *mksolver(void)
{
     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     return &(slv->super);
}

void X(dft_generic_register)(planner *p)
{
     REGISTER_SOLVER(p, mksolver());
}