view src/fftw-3.3.3/rdft/dht-rader.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-11 Matteo Frigo
 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include "rdft.h"

/*
 * Compute DHTs of prime sizes using Rader's trick: turn them
 * into convolutions of size n - 1, which we then perform via a pair
 * of FFTs.   (We can then do prime real FFTs via rdft-dht.c.)
 *
 * Optionally (determined by the "pad" field of the solver), we can
 * perform the (cyclic) convolution by zero-padding to a size
 * >= 2*(n-1) - 1.  This is advantageous if n-1 has large prime factors.
 *
 */

typedef struct {
     solver super;
     int pad;
} S;

typedef struct {
     plan_rdft super;

     plan *cld1, *cld2;
     R *omega;
     INT n, npad, g, ginv;
     INT is, os;
     plan *cld_omega;
} P;

static rader_tl *omegas = 0;

/***************************************************************************/

/* If R2HC_ONLY_CONV is 1, we use a trick to perform the convolution
   purely in terms of R2HC transforms, as opposed to R2HC followed by H2RC.
   This requires a few more operations, but allows us to share the same
   plan/codelets for both Rader children. */
#define R2HC_ONLY_CONV 1

static void apply(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     INT n = ego->n; /* prime */
     INT npad = ego->npad; /* == n - 1 for unpadded Rader; always even */
     INT is = ego->is, os;
     INT k, gpower, g;
     R *buf, *omega;
     R r0;

     buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);

     /* First, permute the input, storing in buf: */
     g = ego->g; 
     for (gpower = 1, k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
	  buf[k] = I[gpower * is];
     }
     /* gpower == g^(n-1) mod n == 1 */;

     A(n - 1 <= npad);
     for (k = n - 1; k < npad; ++k) /* optionally, zero-pad convolution */
	  buf[k] = 0;

     os = ego->os;

     /* compute RDFT of buf, storing in buf (i.e., in-place): */
     {
	    plan_rdft *cld = (plan_rdft *) ego->cld1;
	    cld->apply((plan *) cld, buf, buf);
     }

     /* set output DC component: */
     O[0] = (r0 = I[0]) + buf[0];

     /* now, multiply by omega: */
     omega = ego->omega;
     buf[0] *= omega[0];
     for (k = 1; k < npad/2; ++k) {
	  E rB, iB, rW, iW, a, b;
	  rW = omega[k];
	  iW = omega[npad - k];
	  rB = buf[k];
	  iB = buf[npad - k];
	  a = rW * rB - iW * iB;
	  b = rW * iB + iW * rB;
#if R2HC_ONLY_CONV
	  buf[k] = a + b;
	  buf[npad - k] = a - b;
#else
	  buf[k] = a;
	  buf[npad - k] = b;
#endif
     }
     /* Nyquist component: */
     A(k + k == npad); /* since npad is even */
     buf[k] *= omega[k];
     
     /* this will add input[0] to all of the outputs after the ifft */
     buf[0] += r0;

     /* inverse FFT: */
     {
	    plan_rdft *cld = (plan_rdft *) ego->cld2;
	    cld->apply((plan *) cld, buf, buf);
     }

     /* do inverse permutation to unshuffle the output: */
     A(gpower == 1);
#if R2HC_ONLY_CONV
     O[os] = buf[0];
     gpower = g = ego->ginv;
     A(npad == n - 1 || npad/2 >= n - 1);
     if (npad == n - 1) {
	  for (k = 1; k < npad/2; ++k, gpower = MULMOD(gpower, g, n)) {
	       O[gpower * os] = buf[k] + buf[npad - k];
	  }
	  O[gpower * os] = buf[k];
	  ++k, gpower = MULMOD(gpower, g, n);
	  for (; k < npad; ++k, gpower = MULMOD(gpower, g, n)) {
	       O[gpower * os] = buf[npad - k] - buf[k];
	  }
     }
     else {
	  for (k = 1; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
	       O[gpower * os] = buf[k] + buf[npad - k];
	  }
     }
#else
     g = ego->ginv;
     for (k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
	  O[gpower * os] = buf[k];
     }
#endif
     A(gpower == 1);

     X(ifree)(buf);
}

static R *mkomega(enum wakefulness wakefulness,
		  plan *p_, INT n, INT npad, INT ginv)
{
     plan_rdft *p = (plan_rdft *) p_;
     R *omega;
     INT i, gpower;
     trigreal scale;
     triggen *t;

     if ((omega = X(rader_tl_find)(n, npad + 1, ginv, omegas))) 
	  return omega;

     omega = (R *)MALLOC(sizeof(R) * npad, TWIDDLES);

     scale = npad; /* normalization for convolution */

     t = X(mktriggen)(wakefulness, n);
     for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) {
	  trigreal w[2];
	  t->cexpl(t, gpower, w);
	  omega[i] = (w[0] + w[1]) / scale;
     }
     X(triggen_destroy)(t);
     A(gpower == 1);

     A(npad == n - 1 || npad >= 2*(n - 1) - 1);

     for (; i < npad; ++i)
	  omega[i] = K(0.0);
     if (npad > n - 1)
	  for (i = 1; i < n-1; ++i)
	       omega[npad - i] = omega[n - 1 - i];

     p->apply(p_, omega, omega);

     X(rader_tl_insert)(n, npad + 1, ginv, omega, &omegas);
     return omega;
}

static void free_omega(R *omega)
{
     X(rader_tl_delete)(omega, &omegas);
}

/***************************************************************************/

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;

     X(plan_awake)(ego->cld1, wakefulness);
     X(plan_awake)(ego->cld2, wakefulness);
     X(plan_awake)(ego->cld_omega, wakefulness);

     switch (wakefulness) {
	 case SLEEPY:
	      free_omega(ego->omega);
	      ego->omega = 0;
	      break;
	 default:
	      ego->g = X(find_generator)(ego->n);
	      ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n);
	      A(MULMOD(ego->g, ego->ginv, ego->n) == 1);

	      A(!ego->omega);
	      ego->omega = mkomega(wakefulness, 
				   ego->cld_omega,ego->n,ego->npad,ego->ginv);
	      break;
     }
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(plan_destroy_internal)(ego->cld_omega);
     X(plan_destroy_internal)(ego->cld2);
     X(plan_destroy_internal)(ego->cld1);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;

     p->print(p, "(dht-rader-%D/%D%ois=%oos=%(%p%)",
              ego->n, ego->npad, ego->is, ego->os, ego->cld1);
     if (ego->cld2 != ego->cld1)
          p->print(p, "%(%p%)", ego->cld2);
     if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2)
          p->print(p, "%(%p%)", ego->cld_omega);
     p->putchr(p, ')');
}

static int applicable(const solver *ego, const problem *p_, const planner *plnr)
{
     const problem_rdft *p = (const problem_rdft *) p_;
     UNUSED(ego);
     return (1
	     && p->sz->rnk == 1
	     && p->vecsz->rnk == 0
	     && p->kind[0] == DHT
	     && X(is_prime)(p->sz->dims[0].n)
	     && p->sz->dims[0].n > 2
	     && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW)
	     /* proclaim the solver SLOW if p-1 is not easily
		factorizable.  Unlike in the complex case where
		Bluestein can solve the problem, in the DHT case we
		may have no other choice */
	     && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1))
	  );
}

static INT choose_transform_size(INT minsz)
{
     static const INT primes[] = { 2, 3, 5, 0 };
     while (!X(factors_into)(minsz, primes) || minsz % 2)
	  ++minsz;
     return minsz;
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const S *ego = (const S *) ego_;
     const problem_rdft *p = (const problem_rdft *) p_;
     P *pln;
     INT n, npad;
     INT is, os;
     plan *cld1 = (plan *) 0;
     plan *cld2 = (plan *) 0;
     plan *cld_omega = (plan *) 0;
     R *buf = (R *) 0;
     problem *cldp;

     static const plan_adt padt = {
	  X(rdft_solve), awake, print, destroy
     };

     if (!applicable(ego_, p_, plnr))
	  return (plan *) 0;

     n = p->sz->dims[0].n;
     is = p->sz->dims[0].is;
     os = p->sz->dims[0].os;

     if (ego->pad)
	  npad = choose_transform_size(2 * (n - 1) - 1);
     else
	  npad = n - 1;

     /* initial allocation for the purpose of planning */
     buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);

     cld1 = X(mkplan_f_d)(plnr, 
			  X(mkproblem_rdft_1_d)(X(mktensor_1d)(npad, 1, 1),
						X(mktensor_1d)(1, 0, 0),
						buf, buf,
						R2HC),
			  NO_SLOW, 0, 0);
     if (!cld1) goto nada;

     cldp =
          X(mkproblem_rdft_1_d)(
               X(mktensor_1d)(npad, 1, 1),
               X(mktensor_1d)(1, 0, 0),
	       buf, buf, 
#if R2HC_ONLY_CONV
	       R2HC
#else
	       HC2R
#endif
	       );
     if (!(cld2 = X(mkplan_f_d)(plnr, cldp, NO_SLOW, 0, 0)))
	  goto nada;

     /* plan for omega */
     cld_omega = X(mkplan_f_d)(plnr, 
			       X(mkproblem_rdft_1_d)(
				    X(mktensor_1d)(npad, 1, 1),
				    X(mktensor_1d)(1, 0, 0),
				    buf, buf, R2HC),
			       NO_SLOW, ESTIMATE, 0);
     if (!cld_omega) goto nada;

     /* deallocate buffers; let awake() or apply() allocate them for real */
     X(ifree)(buf);
     buf = 0;

     pln = MKPLAN_RDFT(P, &padt, apply);
     pln->cld1 = cld1;
     pln->cld2 = cld2;
     pln->cld_omega = cld_omega;
     pln->omega = 0;
     pln->n = n;
     pln->npad = npad;
     pln->is = is;
     pln->os = os;

     X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
     pln->super.super.ops.other += (npad/2-1)*6 + npad + n + (n-1) * ego->pad;
     pln->super.super.ops.add += (npad/2-1)*2 + 2 + (n-1) * ego->pad;
     pln->super.super.ops.mul += (npad/2-1)*4 + 2 + ego->pad;
#if R2HC_ONLY_CONV
     pln->super.super.ops.other += n-2 - ego->pad;
     pln->super.super.ops.add += (npad/2-1)*2 + (n-2) - ego->pad;
#endif

     return &(pln->super.super);

 nada:
     X(ifree0)(buf);
     X(plan_destroy_internal)(cld_omega);
     X(plan_destroy_internal)(cld2);
     X(plan_destroy_internal)(cld1);
     return 0;
}

/* constructors */

static solver *mksolver(int pad)
{
     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     slv->pad = pad;
     return &(slv->super);
}

void X(dht_rader_register)(planner *p)
{
     REGISTER_SOLVER(p, mksolver(0));
     REGISTER_SOLVER(p, mksolver(1));
}