view src/fftw-3.3.3/mpi/rdft-rank-geq2.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-11 Matteo Frigo
 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* Complex RDFTs of rank >= 2, for the case where we are distributed
   across the first dimension only, and the output is not transposed. */

#include "mpi-rdft.h"

typedef struct {
     solver super;
     int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
} S;

typedef struct {
     plan_mpi_rdft super;

     plan *cld1, *cld2;
     int preserve_input;
} P;

static void apply(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     plan_rdft *cld1, *cld2;
     
     /* RDFT local dimensions */
     cld1 = (plan_rdft *) ego->cld1;
     if (ego->preserve_input) {
	  cld1->apply(ego->cld1, I, O);
	  I = O;
     }
     else
	  cld1->apply(ego->cld1, I, I);

     /* RDFT non-local dimension (via rdft-rank1-bigvec, usually): */
     cld2 = (plan_rdft *) ego->cld2;
     cld2->apply(ego->cld2, I, O);
}

static int applicable(const S *ego, const problem *p_,
		      const planner *plnr)
{
     const problem_mpi_rdft *p = (const problem_mpi_rdft *) p_;
     return (1
	     && p->sz->rnk > 1
	     && p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */
	     && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
					  && p->I != p->O))
	     && XM(is_local_after)(1, p->sz, IB)
	     && XM(is_local_after)(1, p->sz, OB)
	     && (!NO_SLOWP(plnr) /* slow if rdft-serial is applicable */
		 || !XM(rdft_serial_applicable)(p))
	  );
}

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     X(plan_awake)(ego->cld1, wakefulness);
     X(plan_awake)(ego->cld2, wakefulness);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(plan_destroy_internal)(ego->cld2);
     X(plan_destroy_internal)(ego->cld1);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     p->print(p, "(mpi-rdft-rank-geq2%s%(%p%)%(%p%))", 
	      ego->preserve_input==2 ?"/p":"", ego->cld1, ego->cld2);
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const S *ego = (const S *) ego_;
     const problem_mpi_rdft *p;
     P *pln;
     plan *cld1 = 0, *cld2 = 0;
     R *I, *O, *I2;
     tensor *sz;
     dtensor *sz2;
     int i, my_pe, n_pes;
     INT nrest;
     static const plan_adt padt = {
          XM(rdft_solve), awake, print, destroy
     };

     UNUSED(ego);

     if (!applicable(ego, p_, plnr))
          return (plan *) 0;

     p = (const problem_mpi_rdft *) p_;

     I2 = I = p->I;
     O = p->O;
     if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) 
	  I = O; 
     MPI_Comm_rank(p->comm, &my_pe);
     MPI_Comm_size(p->comm, &n_pes);

     sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
     i = p->sz->rnk - 2; A(i >= 0);
     sz->dims[i].n = p->sz->dims[i+1].n;
     sz->dims[i].is = sz->dims[i].os = p->vn;
     for (--i; i >= 0; --i) {
	  sz->dims[i].n = p->sz->dims[i+1].n;
	  sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
     }
     nrest = X(tensor_sz)(sz);
     {
          INT is = sz->dims[0].n * sz->dims[0].is;
          INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[IB], my_pe);
	  cld1 = X(mkplan_d)(plnr,
                             X(mkproblem_rdft_d)(sz,
						 X(mktensor_2d)(b, is, is,
								p->vn, 1, 1),
						 I2, I, p->kind + 1));
	  if (XM(any_true)(!cld1, p->comm)) goto nada;
     }

     sz2 = XM(mkdtensor)(1); /* tensor for first (distributed) dimension */
     sz2->dims[0] = p->sz->dims[0];
     cld2 = X(mkplan_d)(plnr, XM(mkproblem_rdft_d)(sz2, nrest * p->vn,
						   I, O,
						   p->comm, p->kind,
						   RANK1_BIGVEC_ONLY));
     if (XM(any_true)(!cld2, p->comm)) goto nada;

     pln = MKPLAN_MPI_RDFT(P, &padt, apply);
     pln->cld1 = cld1;
     pln->cld2 = cld2;
     pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);

     X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);

     return &(pln->super.super);

 nada:
     X(plan_destroy_internal)(cld2);
     X(plan_destroy_internal)(cld1);
     return (plan *) 0;
}

static solver *mksolver(int preserve_input)
{
     static const solver_adt sadt = { PROBLEM_MPI_RDFT, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     slv->preserve_input = preserve_input;
     return &(slv->super);
}

void XM(rdft_rank_geq2_register)(planner *p)
{
     int preserve_input;
     for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
	  REGISTER_SOLVER(p, mksolver(preserve_input));
}