view src/fftw-3.3.3/genfft/twiddle.ml @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
line wrap: on
line source
(*
 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 * Copyright (c) 2003, 2007-11 Matteo Frigo
 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 *)

(* policies for loading/computing twiddle factors *)
open Complex
open Util

type twop = TW_FULL | TW_CEXP | TW_NEXT

let optostring = function
  | TW_CEXP -> "TW_CEXP"
  | TW_NEXT -> "TW_NEXT"
  | TW_FULL -> "TW_FULL"

type twinstr = (twop * int * int)

let rec unroll_twfull l = match l with
| [] -> []
| (TW_FULL, v, n) :: b ->
    (forall [] cons 1 n (fun i -> (TW_CEXP, v, i)))
    @ unroll_twfull b
| a :: b -> a :: unroll_twfull b

let twinstr_to_c_string l =
  let one (op, a, b) = Printf.sprintf "{ %s, %d, %d }" (optostring op) a b
  in let rec loop first = function
    | [] -> ""
    | a :: b ->  (if first then "\n" else ",\n") ^ (one a) ^ (loop false b)
  in "{" ^ (loop true l) ^ "}"

let twinstr_to_simd_string vl l =
  let one sep = function
    | (TW_NEXT, 1, 0) -> sep ^ "{TW_NEXT, " ^ vl ^ ", 0}"
    | (TW_NEXT, _, _) -> failwith "twinstr_to_simd_string"
    | (TW_CEXP, v, b) -> sep ^ (Printf.sprintf "VTW(%d,%d)" v b)
    | _ -> failwith "twinstr_to_simd_string"
  in let rec loop first = function
    | [] -> ""
    | a :: b ->  (one (if first then "\n" else ",\n") a) ^ (loop false b)
  in "{" ^ (loop true (unroll_twfull l)) ^ "}"
  
let rec pow m n =
  if (n = 0) then 1
  else m * pow m (n - 1)

let rec is_pow m n =
  n = 1 || ((n mod m) = 0 && is_pow m (n / m))

let rec log m n = if n = 1 then 0 else 1 + log m (n / m)

let rec largest_power_smaller_than m i =
  if (is_pow m i) then i
  else largest_power_smaller_than m (i - 1)

let rec smallest_power_larger_than m i =
  if (is_pow m i) then i
  else smallest_power_larger_than m (i + 1)

let rec_array n f =
  let g = ref (fun i -> Complex.zero) in
  let a = Array.init n (fun i -> lazy (!g i)) in
  let h i = f (fun i -> Lazy.force a.(i)) i in
  begin
    g := h;
    h
  end

 
let ctimes use_complex_arith a b =
  if use_complex_arith then
    Complex.ctimes a b
  else
    Complex.times a b

let ctimesj use_complex_arith a b =
  if use_complex_arith then
    Complex.ctimesj a b
  else
    Complex.times (Complex.conj a) b

let make_bytwiddle sign use_complex_arith g f i =
  if i = 0 then 
    f i
  else if sign = 1 then 
    ctimes use_complex_arith (g i) (f i)
  else
    ctimesj use_complex_arith (g i) (f i)

(* various policies for computing/loading twiddle factors *)

let twiddle_policy_load_all v use_complex_arith =
  let bytwiddle n sign w f =
    make_bytwiddle sign use_complex_arith (fun i -> w (i - 1)) f
  and twidlen n = 2 * (n - 1)
  and twdesc r = [(TW_FULL, v, r);(TW_NEXT, 1, 0)]
  in bytwiddle, twidlen, twdesc

(*
 * if i is a power of two, then load w (log i)
 * else let x = largest power of 2 less than i in
 *      let y = i - x in
 *      compute w^{x+y} = w^x * w^y
 *)
let twiddle_policy_log2 v use_complex_arith =
  let bytwiddle n sign w f =
    let g = rec_array n (fun self i ->
      if i = 0 then Complex.one
      else if is_pow 2 i then w (log 2 i)
      else let x = largest_power_smaller_than 2 i in
      let y = i - x in
	ctimes use_complex_arith (self x) (self y))
    in make_bytwiddle sign use_complex_arith g f
  and twidlen n = 2 * (log 2 (largest_power_smaller_than 2 (2 * n - 1)))
  and twdesc n =
    (List.flatten 
       (List.map 
	  (fun i -> 
	    if i > 0 && is_pow 2 i then 
	      [TW_CEXP, v, i] 
	    else 
	      [])
	  (iota n)))
    @ [(TW_NEXT, 1, 0)]
  in bytwiddle, twidlen, twdesc

let twiddle_policy_log3 v use_complex_arith =
  let rec terms_needed i pi s n =
    if (s >= n - 1) then i
    else terms_needed (i + 1) (3 * pi) (s + pi) n
  in
  let rec bytwiddle n sign w f =
    let nterms = terms_needed 0 1 0 n in
    let maxterm = pow 3 (nterms - 1) in
    let g = rec_array (3 * n) (fun self i ->
      if i = 0 then Complex.one
      else if is_pow 3 i then w (log 3 i)
      else if i = (n - 1) && maxterm >= n then
	w (nterms - 1)
      else let x = smallest_power_larger_than 3 i in
      if (i + i >= x) then
	let x = min x (n - 1) in
	  ctimesj use_complex_arith (self (x - i)) (self x)
      else let x = largest_power_smaller_than 3 i in
	ctimes use_complex_arith (self (i - x)) (self x))
    in make_bytwiddle sign use_complex_arith g f
  and twidlen n = 2 * (terms_needed 0 1 0 n)
  and twdesc n =
    (List.map 
       (fun i -> 
	  let x = min (pow 3 i) (n - 1) in
	    TW_CEXP, v, x)
       (iota ((twidlen n) / 2)))
    @ [(TW_NEXT, 1, 0)]
  in bytwiddle, twidlen, twdesc
    
let current_twiddle_policy = ref twiddle_policy_load_all

let twiddle_policy use_complex_arith = 
  !current_twiddle_policy use_complex_arith

let set_policy x = Arg.Unit (fun () -> current_twiddle_policy := x)
let set_policy_int x = Arg.Int (fun i -> current_twiddle_policy := x i)

let undocumented = " Undocumented twiddle policy"

let speclist = [
  "-twiddle-load-all", set_policy twiddle_policy_load_all, undocumented;
  "-twiddle-log2", set_policy twiddle_policy_log2, undocumented;
  "-twiddle-log3", set_policy twiddle_policy_log3, undocumented;
]