view src/fftw-3.3.3/dft/simd/common/t1fv_10.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-11 Matteo Frigo
 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Sun Nov 25 07:38:03 EST 2012 */

#include "codelet-dft.h"

#ifdef HAVE_FMA

/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t1fv_10 -include t1f.h */

/*
 * This function contains 51 FP additions, 40 FP multiplications,
 * (or, 33 additions, 22 multiplications, 18 fused multiply/add),
 * 43 stack variables, 4 constants, and 20 memory accesses
 */
#include "t1f.h"

static void t1fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
     DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
     DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
     DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
     {
	  INT m;
	  R *x;
	  x = ri;
	  for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) {
	       V Td, TA, T4, Ta, Tk, TE, Tp, TF, TB, T9, T1, T2, Tb;
	       T1 = LD(&(x[0]), ms, &(x[0]));
	       T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
	       {
		    V Tg, Tn, Ti, Tl;
		    Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
		    Tn = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
		    Ti = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
		    Tl = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
		    {
			 V T6, T8, T5, Tc;
			 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
			 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
			 {
			      V T3, Th, To, Tj, Tm, T7;
			      T7 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
			      T3 = BYTWJ(&(W[TWVL * 8]), T2);
			      Th = BYTWJ(&(W[TWVL * 6]), Tg);
			      To = BYTWJ(&(W[0]), Tn);
			      Tj = BYTWJ(&(W[TWVL * 16]), Ti);
			      Tm = BYTWJ(&(W[TWVL * 10]), Tl);
			      T6 = BYTWJ(&(W[TWVL * 2]), T5);
			      Td = BYTWJ(&(W[TWVL * 4]), Tc);
			      T8 = BYTWJ(&(W[TWVL * 12]), T7);
			      TA = VADD(T1, T3);
			      T4 = VSUB(T1, T3);
			      Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
			      Tk = VSUB(Th, Tj);
			      TE = VADD(Th, Tj);
			      Tp = VSUB(Tm, To);
			      TF = VADD(Tm, To);
			 }
			 TB = VADD(T6, T8);
			 T9 = VSUB(T6, T8);
		    }
	       }
	       Tb = BYTWJ(&(W[TWVL * 14]), Ta);
	       {
		    V TL, TG, Tw, Tq, TC, Te;
		    TL = VSUB(TE, TF);
		    TG = VADD(TE, TF);
		    Tw = VSUB(Tk, Tp);
		    Tq = VADD(Tk, Tp);
		    TC = VADD(Tb, Td);
		    Te = VSUB(Tb, Td);
		    {
			 V TM, TD, Tv, Tf;
			 TM = VSUB(TB, TC);
			 TD = VADD(TB, TC);
			 Tv = VSUB(T9, Te);
			 Tf = VADD(T9, Te);
			 {
			      V TP, TN, TH, TJ, Tz, Tx, Tr, Tt, TI, Ts;
			      TP = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TL, TM));
			      TN = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TM, TL));
			      TH = VADD(TD, TG);
			      TJ = VSUB(TD, TG);
			      Tz = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tv, Tw));
			      Tx = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tv));
			      Tr = VADD(Tf, Tq);
			      Tt = VSUB(Tf, Tq);
			      ST(&(x[0]), VADD(TA, TH), ms, &(x[0]));
			      TI = VFNMS(LDK(KP250000000), TH, TA);
			      ST(&(x[WS(rs, 5)]), VADD(T4, Tr), ms, &(x[WS(rs, 1)]));
			      Ts = VFNMS(LDK(KP250000000), Tr, T4);
			      {
				   V TK, TO, Tu, Ty;
				   TK = VFNMS(LDK(KP559016994), TJ, TI);
				   TO = VFMA(LDK(KP559016994), TJ, TI);
				   Tu = VFMA(LDK(KP559016994), Tt, Ts);
				   Ty = VFNMS(LDK(KP559016994), Tt, Ts);
				   ST(&(x[WS(rs, 8)]), VFNMSI(TN, TK), ms, &(x[0]));
				   ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0]));
				   ST(&(x[WS(rs, 6)]), VFNMSI(TP, TO), ms, &(x[0]));
				   ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));
				   ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tu), ms, &(x[WS(rs, 1)]));
				   ST(&(x[WS(rs, 1)]), VFNMSI(Tx, Tu), ms, &(x[WS(rs, 1)]));
				   ST(&(x[WS(rs, 7)]), VFMAI(Tz, Ty), ms, &(x[WS(rs, 1)]));
				   ST(&(x[WS(rs, 3)]), VFNMSI(Tz, Ty), ms, &(x[WS(rs, 1)]));
			      }
			 }
		    }
	       }
	  }
     }
     VLEAVE();
}

static const tw_instr twinstr[] = {
     VTW(0, 1),
     VTW(0, 2),
     VTW(0, 3),
     VTW(0, 4),
     VTW(0, 5),
     VTW(0, 6),
     VTW(0, 7),
     VTW(0, 8),
     VTW(0, 9),
     {TW_NEXT, VL, 0}
};

static const ct_desc desc = { 10, XSIMD_STRING("t1fv_10"), twinstr, &GENUS, {33, 22, 18, 0}, 0, 0, 0 };

void XSIMD(codelet_t1fv_10) (planner *p) {
     X(kdft_dit_register) (p, t1fv_10, &desc);
}
#else				/* HAVE_FMA */

/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t1fv_10 -include t1f.h */

/*
 * This function contains 51 FP additions, 30 FP multiplications,
 * (or, 45 additions, 24 multiplications, 6 fused multiply/add),
 * 32 stack variables, 4 constants, and 20 memory accesses
 */
#include "t1f.h"

static void t1fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
     DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
     DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
     DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
     DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
     {
	  INT m;
	  R *x;
	  x = ri;
	  for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) {
	       V Tr, TH, Tg, Tl, Tm, TA, TB, TJ, T5, Ta, Tb, TD, TE, TI, To;
	       V Tq, Tp;
	       To = LD(&(x[0]), ms, &(x[0]));
	       Tp = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
	       Tq = BYTWJ(&(W[TWVL * 8]), Tp);
	       Tr = VSUB(To, Tq);
	       TH = VADD(To, Tq);
	       {
		    V Td, Tk, Tf, Ti;
		    {
			 V Tc, Tj, Te, Th;
			 Tc = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
			 Td = BYTWJ(&(W[TWVL * 6]), Tc);
			 Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
			 Tk = BYTWJ(&(W[0]), Tj);
			 Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
			 Tf = BYTWJ(&(W[TWVL * 16]), Te);
			 Th = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
			 Ti = BYTWJ(&(W[TWVL * 10]), Th);
		    }
		    Tg = VSUB(Td, Tf);
		    Tl = VSUB(Ti, Tk);
		    Tm = VADD(Tg, Tl);
		    TA = VADD(Td, Tf);
		    TB = VADD(Ti, Tk);
		    TJ = VADD(TA, TB);
	       }
	       {
		    V T2, T9, T4, T7;
		    {
			 V T1, T8, T3, T6;
			 T1 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
			 T2 = BYTWJ(&(W[TWVL * 2]), T1);
			 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
			 T9 = BYTWJ(&(W[TWVL * 4]), T8);
			 T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
			 T4 = BYTWJ(&(W[TWVL * 12]), T3);
			 T6 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
			 T7 = BYTWJ(&(W[TWVL * 14]), T6);
		    }
		    T5 = VSUB(T2, T4);
		    Ta = VSUB(T7, T9);
		    Tb = VADD(T5, Ta);
		    TD = VADD(T2, T4);
		    TE = VADD(T7, T9);
		    TI = VADD(TD, TE);
	       }
	       {
		    V Tn, Ts, Tt, Tx, Tz, Tv, Tw, Ty, Tu;
		    Tn = VMUL(LDK(KP559016994), VSUB(Tb, Tm));
		    Ts = VADD(Tb, Tm);
		    Tt = VFNMS(LDK(KP250000000), Ts, Tr);
		    Tv = VSUB(T5, Ta);
		    Tw = VSUB(Tg, Tl);
		    Tx = VBYI(VFMA(LDK(KP951056516), Tv, VMUL(LDK(KP587785252), Tw)));
		    Tz = VBYI(VFNMS(LDK(KP587785252), Tv, VMUL(LDK(KP951056516), Tw)));
		    ST(&(x[WS(rs, 5)]), VADD(Tr, Ts), ms, &(x[WS(rs, 1)]));
		    Ty = VSUB(Tt, Tn);
		    ST(&(x[WS(rs, 3)]), VSUB(Ty, Tz), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 7)]), VADD(Tz, Ty), ms, &(x[WS(rs, 1)]));
		    Tu = VADD(Tn, Tt);
		    ST(&(x[WS(rs, 1)]), VSUB(Tu, Tx), ms, &(x[WS(rs, 1)]));
		    ST(&(x[WS(rs, 9)]), VADD(Tx, Tu), ms, &(x[WS(rs, 1)]));
	       }
	       {
		    V TM, TK, TL, TG, TO, TC, TF, TP, TN;
		    TM = VMUL(LDK(KP559016994), VSUB(TI, TJ));
		    TK = VADD(TI, TJ);
		    TL = VFNMS(LDK(KP250000000), TK, TH);
		    TC = VSUB(TA, TB);
		    TF = VSUB(TD, TE);
		    TG = VBYI(VFNMS(LDK(KP587785252), TF, VMUL(LDK(KP951056516), TC)));
		    TO = VBYI(VFMA(LDK(KP951056516), TF, VMUL(LDK(KP587785252), TC)));
		    ST(&(x[0]), VADD(TH, TK), ms, &(x[0]));
		    TP = VADD(TM, TL);
		    ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0]));
		    ST(&(x[WS(rs, 6)]), VSUB(TP, TO), ms, &(x[0]));
		    TN = VSUB(TL, TM);
		    ST(&(x[WS(rs, 2)]), VADD(TG, TN), ms, &(x[0]));
		    ST(&(x[WS(rs, 8)]), VSUB(TN, TG), ms, &(x[0]));
	       }
	  }
     }
     VLEAVE();
}

static const tw_instr twinstr[] = {
     VTW(0, 1),
     VTW(0, 2),
     VTW(0, 3),
     VTW(0, 4),
     VTW(0, 5),
     VTW(0, 6),
     VTW(0, 7),
     VTW(0, 8),
     VTW(0, 9),
     {TW_NEXT, VL, 0}
};

static const ct_desc desc = { 10, XSIMD_STRING("t1fv_10"), twinstr, &GENUS, {45, 24, 6, 0}, 0, 0, 0 };

void XSIMD(codelet_t1fv_10) (planner *p) {
     X(kdft_dit_register) (p, t1fv_10, &desc);
}
#endif				/* HAVE_FMA */