view src/fftw-3.3.3/dft/rank-geq2.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-11 Matteo Frigo
 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


/* plans for DFT of rank >= 2 (multidimensional) */

#include "dft.h"

typedef struct {
     solver super;
     int spltrnk;
     const int *buddies;
     int nbuddies;
} S;

typedef struct {
     plan_dft super;

     plan *cld1, *cld2;
     const S *solver;
} P;

/* Compute multi-dimensional DFT by applying the two cld plans
   (lower-rnk DFTs). */
static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
     const P *ego = (const P *) ego_;
     plan_dft *cld1, *cld2;

     cld1 = (plan_dft *) ego->cld1;
     cld1->apply(ego->cld1, ri, ii, ro, io);

     cld2 = (plan_dft *) ego->cld2;
     cld2->apply(ego->cld2, ro, io, ro, io);
}


static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     X(plan_awake)(ego->cld1, wakefulness);
     X(plan_awake)(ego->cld2, wakefulness);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(plan_destroy_internal)(ego->cld2);
     X(plan_destroy_internal)(ego->cld1);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     const S *s = ego->solver;
     p->print(p, "(dft-rank>=2/%d%(%p%)%(%p%))",
	      s->spltrnk, ego->cld1, ego->cld2);
}

static int picksplit(const S *ego, const tensor *sz, int *rp)
{
     A(sz->rnk > 1); /* cannot split rnk <= 1 */
     if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp))
	  return 0;
     *rp += 1; /* convert from dim. index to rank */
     if (*rp >= sz->rnk) /* split must reduce rank */
	  return 0;
     return 1;
}

static int applicable0(const solver *ego_, const problem *p_, int *rp)
{
     const problem_dft *p = (const problem_dft *) p_;
     const S *ego = (const S *)ego_;
     return (1
	     && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk)
	     && p->sz->rnk >= 2
	     && picksplit(ego, p->sz, rp)
	  );
}

/* TODO: revise this. */
static int applicable(const solver *ego_, const problem *p_, 
		      const planner *plnr, int *rp)
{
     const S *ego = (const S *)ego_;
     const problem_dft *p = (const problem_dft *) p_;

     if (!applicable0(ego_, p_, rp)) return 0;

     if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0])) return 0;

     /* Heuristic: if the vector stride is greater than the transform
        sz, don't use (prefer to do the vector loop first with a
        vrank-geq1 plan). */
     if (NO_UGLYP(plnr))
	  if (p->vecsz->rnk > 0 &&
	      X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz))
	       return 0;

     return 1;
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const S *ego = (const S *) ego_;
     const problem_dft *p;
     P *pln;
     plan *cld1 = 0, *cld2 = 0;
     tensor *sz1, *sz2, *vecszi, *sz2i;
     int spltrnk;

     static const plan_adt padt = {
	  X(dft_solve), awake, print, destroy
     };

     if (!applicable(ego_, p_, plnr, &spltrnk))
          return (plan *) 0;

     p = (const problem_dft *) p_;
     X(tensor_split)(p->sz, &sz1, spltrnk, &sz2);
     vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS);
     sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS);

     cld1 = X(mkplan_d)(plnr, 
			X(mkproblem_dft_d)(X(tensor_copy)(sz2),
					   X(tensor_append)(p->vecsz, sz1),
					   p->ri, p->ii, p->ro, p->io));
     if (!cld1) goto nada;

     cld2 = X(mkplan_d)(plnr, 
			X(mkproblem_dft_d)(
			     X(tensor_copy_inplace)(sz1, INPLACE_OS),
			     X(tensor_append)(vecszi, sz2i),
			     p->ro, p->io, p->ro, p->io));
     if (!cld2) goto nada;

     pln = MKPLAN_DFT(P, &padt, apply);

     pln->cld1 = cld1;
     pln->cld2 = cld2;

     pln->solver = ego;
     X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);

     X(tensor_destroy4)(sz1, sz2, vecszi, sz2i);

     return &(pln->super.super);

 nada:
     X(plan_destroy_internal)(cld2);
     X(plan_destroy_internal)(cld1);
     X(tensor_destroy4)(sz1, sz2, vecszi, sz2i);
     return (plan *) 0;
}

static solver *mksolver(int spltrnk, const int *buddies, int nbuddies)
{
     static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     slv->spltrnk = spltrnk;
     slv->buddies = buddies;
     slv->nbuddies = nbuddies;
     return &(slv->super);
}

void X(dft_rank_geq2_register)(planner *p)
{
     int i;
     static const int buddies[] = { 1, 0, -2 };

     const int nbuddies = (int)(sizeof(buddies) / sizeof(buddies[0]));

     for (i = 0; i < nbuddies; ++i)
          REGISTER_SOLVER(p, mksolver(buddies[i], buddies, nbuddies));

     /* FIXME:

        Should we try more buddies? 

        Another possible variant is to swap cld1 and cld2 (or rather,
        to swap their problems; they are not interchangeable because
        cld2 must be in-place).  In past versions of FFTW, however, I
        seem to recall that such rearrangements have made little or no
        difference.
     */
}