view src/fftw-3.3.3/dft/dftw-direct.c @ 83:ae30d91d2ffe

Replace these with versions built using an older toolset (so as to avoid ABI compatibilities when linking on Ubuntu 14.04 for packaging purposes)
author Chris Cannam
date Fri, 07 Feb 2020 11:51:13 +0000
parents 37bf6b4a2645
children
line wrap: on
line source
/*
 * Copyright (c) 2003, 2007-11 Matteo Frigo
 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


#include "ct.h"

typedef struct {
     ct_solver super;
     const ct_desc *desc;
     int bufferedp;
     kdftw k;
} S;

typedef struct {
     plan_dftw super;
     kdftw k;
     INT r;
     stride rs;
     INT m, ms, v, vs, mb, me, extra_iter;
     stride brs;
     twid *td;
     const S *slv;
} P;


/*************************************************************
  Nonbuffered code
 *************************************************************/
static void apply(const plan *ego_, R *rio, R *iio)
{
     const P *ego = (const P *) ego_;
     INT i;
     ASSERT_ALIGNED_DOUBLE;
     for (i = 0; i < ego->v; ++i, rio += ego->vs, iio += ego->vs) {
	  INT  mb = ego->mb, ms = ego->ms;
	  ego->k(rio + mb*ms, iio + mb*ms, ego->td->W, 
		 ego->rs, mb, ego->me, ms);
     }
}

static void apply_extra_iter(const plan *ego_, R *rio, R *iio)
{
     const P *ego = (const P *) ego_;
     INT i, v = ego->v, vs = ego->vs;
     INT mb = ego->mb, me = ego->me, mm = me - 1, ms = ego->ms;
     ASSERT_ALIGNED_DOUBLE;
     for (i = 0; i < v; ++i, rio += vs, iio += vs) {
	  ego->k(rio + mb*ms, iio + mb*ms, ego->td->W, 
		 ego->rs, mb, mm, ms);
	  ego->k(rio + mm*ms, iio + mm*ms, ego->td->W, 
		 ego->rs, mm, mm+2, 0);
     }
}

/*************************************************************
  Buffered code
 *************************************************************/
static void dobatch(const P *ego, R *rA, R *iA, INT mb, INT me, R *buf)
{
     INT brs = WS(ego->brs, 1);
     INT rs = WS(ego->rs, 1);
     INT ms = ego->ms;

     X(cpy2d_pair_ci)(rA + mb*ms, iA + mb*ms, buf, buf + 1,
		      ego->r, rs, brs,
		      me - mb, ms, 2);
     ego->k(buf, buf + 1, ego->td->W, ego->brs, mb, me, 2);
     X(cpy2d_pair_co)(buf, buf + 1, rA + mb*ms, iA + mb*ms,
		      ego->r, brs, rs,
		      me - mb, 2, ms);
}

/* must be even for SIMD alignment; should not be 2^k to avoid
   associativity conflicts */
static INT compute_batchsize(INT radix)
{
     /* round up to multiple of 4 */
     radix += 3;
     radix &= -4;

     return (radix + 2);
}

static void apply_buf(const plan *ego_, R *rio, R *iio)
{
     const P *ego = (const P *) ego_;
     INT i, j, v = ego->v, r = ego->r;
     INT batchsz = compute_batchsize(r);
     R *buf;
     INT mb = ego->mb, me = ego->me;
     size_t bufsz = r * batchsz * 2 * sizeof(R);

     BUF_ALLOC(R *, buf, bufsz);

     for (i = 0; i < v; ++i, rio += ego->vs, iio += ego->vs) {
	  for (j = mb; j + batchsz < me; j += batchsz) 
	       dobatch(ego, rio, iio, j, j + batchsz, buf);

	  dobatch(ego, rio, iio, j, me, buf);
     }

     BUF_FREE(buf, bufsz);
}

/*************************************************************
  common code
 *************************************************************/
static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;

     X(twiddle_awake)(wakefulness, &ego->td, ego->slv->desc->tw,
		      ego->r * ego->m, ego->r, ego->m + ego->extra_iter);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(stride_destroy)(ego->brs);
     X(stride_destroy)(ego->rs);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     const S *slv = ego->slv;
     const ct_desc *e = slv->desc;

     if (slv->bufferedp)
	  p->print(p, "(dftw-directbuf/%D-%D/%D%v \"%s\")",
		   compute_batchsize(ego->r), ego->r,
		   X(twiddle_length)(ego->r, e->tw), ego->v, e->nam);
     else
	  p->print(p, "(dftw-direct-%D/%D%v \"%s\")",
		   ego->r, X(twiddle_length)(ego->r, e->tw), ego->v, e->nam);
}

static int applicable0(const S *ego,
		       INT r, INT irs, INT ors,
		       INT m, INT ms,
		       INT v, INT ivs, INT ovs,
		       INT mb, INT me,
		       R *rio, R *iio,
		       const planner *plnr, INT *extra_iter)
{
     const ct_desc *e = ego->desc;
     UNUSED(v);

     return (
	  1
	  && r == e->radix
	  && irs == ors /* in-place along R */
	  && ivs == ovs /* in-place along V */

	  /* check for alignment/vector length restrictions */
	  && ((*extra_iter = 0,
	       e->genus->okp(e, rio, iio, irs, ivs, m, mb, me, ms, plnr))
	      ||
	      (*extra_iter = 1,
	       (1
		/* FIXME: require full array, otherwise some threads
		   may be extra_iter and other threads won't be.
		   Generating the proper twiddle factors is a pain in
		   this case */
		&& mb == 0 && me == m
		&& e->genus->okp(e, rio, iio, irs, ivs,
				 m, mb, me - 1, ms, plnr)
		&& e->genus->okp(e, rio, iio, irs, ivs,
				 m, me - 1, me + 1, ms, plnr))))

	  && (e->genus->okp(e, rio + ivs, iio + ivs, irs, ivs,
			    m, mb, me - *extra_iter, ms, plnr))

	  );
}

static int applicable0_buf(const S *ego,
			   INT r, INT irs, INT ors,
			   INT m, INT ms,
			   INT v, INT ivs, INT ovs,
			   INT mb, INT me,
			   R *rio, R *iio,
			   const planner *plnr)
{
     const ct_desc *e = ego->desc;
     INT batchsz;
     UNUSED(v); UNUSED(ms); UNUSED(rio); UNUSED(iio);

     return (
	  1
	  && r == e->radix
	  && irs == ors /* in-place along R */
	  && ivs == ovs /* in-place along V */

	  /* check for alignment/vector length restrictions, both for
	     batchsize and for the remainder */
	  && (batchsz = compute_batchsize(r), 1)
	  && (e->genus->okp(e, 0, ((const R *)0) + 1, 2 * batchsz, 0,
			    m, mb, mb + batchsz, 2, plnr))
	  && (e->genus->okp(e, 0, ((const R *)0) + 1, 2 * batchsz, 0,
			    m, mb, me, 2, plnr))
	  );
}

static int applicable(const S *ego,
		      INT r, INT irs, INT ors,
		      INT m, INT ms,
		      INT v, INT ivs, INT ovs,
		      INT mb, INT me,
		      R *rio, R *iio,
		      const planner *plnr, INT *extra_iter)
{
     if (ego->bufferedp) {
	  *extra_iter = 0;
	  if (!applicable0_buf(ego,
			       r, irs, ors, m, ms, v, ivs, ovs, mb, me,
			       rio, iio, plnr))
	       return 0;
     } else {
	  if (!applicable0(ego,
			   r, irs, ors, m, ms, v, ivs, ovs, mb, me,
			   rio, iio, plnr, extra_iter))
	       return 0;
     }

     if (NO_UGLYP(plnr) && X(ct_uglyp)((ego->bufferedp? (INT)512 : (INT)16),
				       v, m * r, r))
	  return 0;

     if (m * r > 262144 && NO_FIXED_RADIX_LARGE_NP(plnr))
	  return 0;

     return 1;
}

static plan *mkcldw(const ct_solver *ego_,
		    INT r, INT irs, INT ors,
		    INT m, INT ms,
		    INT v, INT ivs, INT ovs,
		    INT mstart, INT mcount,
		    R *rio, R *iio,
		    planner *plnr)
{
     const S *ego = (const S *) ego_;
     P *pln;
     const ct_desc *e = ego->desc;
     INT extra_iter;

     static const plan_adt padt = {
	  0, awake, print, destroy
     };

     A(mstart >= 0 && mstart + mcount <= m);
     if (!applicable(ego,
		     r, irs, ors, m, ms, v, ivs, ovs, mstart, mstart + mcount,
		     rio, iio, plnr, &extra_iter))
          return (plan *)0;

     if (ego->bufferedp) {
	  pln = MKPLAN_DFTW(P, &padt, apply_buf);
     } else {
	  pln = MKPLAN_DFTW(P, &padt, extra_iter ? apply_extra_iter : apply);
     }

     pln->k = ego->k;
     pln->rs = X(mkstride)(r, irs);
     pln->td = 0;
     pln->r = r;
     pln->m = m;
     pln->ms = ms;
     pln->v = v;
     pln->vs = ivs;
     pln->mb = mstart;
     pln->me = mstart + mcount;
     pln->slv = ego;
     pln->brs = X(mkstride)(r, 2 * compute_batchsize(r));
     pln->extra_iter = extra_iter;

     X(ops_zero)(&pln->super.super.ops);
     X(ops_madd2)(v * (mcount/e->genus->vl), &e->ops, &pln->super.super.ops);

     if (ego->bufferedp) {
	  /* 8 load/stores * N * V */
	  pln->super.super.ops.other += 8 * r * mcount * v;
     }

     pln->super.super.could_prune_now_p =
	  (!ego->bufferedp && r >= 5 && r < 64 && m >= r);
     return &(pln->super.super);
}

static void regone(planner *plnr, kdftw codelet,
		   const ct_desc *desc, int dec, int bufferedp)
{
     S *slv = (S *)X(mksolver_ct)(sizeof(S), desc->radix, dec, mkcldw, 0);
     slv->k = codelet;
     slv->desc = desc;
     slv->bufferedp = bufferedp;
     REGISTER_SOLVER(plnr, &(slv->super.super));
     if (X(mksolver_ct_hook)) {
	  slv = (S *)X(mksolver_ct_hook)(sizeof(S), desc->radix,
					 dec, mkcldw, 0);
	  slv->k = codelet;
	  slv->desc = desc;
	  slv->bufferedp = bufferedp;
	  REGISTER_SOLVER(plnr, &(slv->super.super));
     }
}

void X(regsolver_ct_directw)(planner *plnr, kdftw codelet,
			     const ct_desc *desc, int dec)
{
     regone(plnr, codelet, desc, dec, /* bufferedp */ 0);
     regone(plnr, codelet, desc, dec, /* bufferedp */ 1);
}