Mercurial > hg > sv-dependency-builds
view src/fftw-3.3.3/doc/html/Real_002ddata-DFTs.html @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line source
<html lang="en"> <head> <title>Real-data DFTs - FFTW 3.3.3</title> <meta http-equiv="Content-Type" content="text/html"> <meta name="description" content="FFTW 3.3.3"> <meta name="generator" content="makeinfo 4.13"> <link title="Top" rel="start" href="index.html#Top"> <link rel="up" href="Basic-Interface.html#Basic-Interface" title="Basic Interface"> <link rel="prev" href="Planner-Flags.html#Planner-Flags" title="Planner Flags"> <link rel="next" href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format" title="Real-data DFT Array Format"> <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage"> <!-- This manual is for FFTW (version 3.3.3, 25 November 2012). Copyright (C) 2003 Matteo Frigo. Copyright (C) 2003 Massachusetts Institute of Technology. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. --> <meta http-equiv="Content-Style-Type" content="text/css"> <style type="text/css"><!-- pre.display { font-family:inherit } pre.format { font-family:inherit } pre.smalldisplay { font-family:inherit; font-size:smaller } pre.smallformat { font-family:inherit; font-size:smaller } pre.smallexample { font-size:smaller } pre.smalllisp { font-size:smaller } span.sc { font-variant:small-caps } span.roman { font-family:serif; font-weight:normal; } span.sansserif { font-family:sans-serif; font-weight:normal; } --></style> </head> <body> <div class="node"> <a name="Real-data-DFTs"></a> <a name="Real_002ddata-DFTs"></a> <p> Next: <a rel="next" accesskey="n" href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>, Previous: <a rel="previous" accesskey="p" href="Planner-Flags.html#Planner-Flags">Planner Flags</a>, Up: <a rel="up" accesskey="u" href="Basic-Interface.html#Basic-Interface">Basic Interface</a> <hr> </div> <h4 class="subsection">4.3.3 Real-data DFTs</h4> <pre class="example"> fftw_plan fftw_plan_dft_r2c_1d(int n0, double *in, fftw_complex *out, unsigned flags); fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1, double *in, fftw_complex *out, unsigned flags); fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2, double *in, fftw_complex *out, unsigned flags); fftw_plan fftw_plan_dft_r2c(int rank, const int *n, double *in, fftw_complex *out, unsigned flags); </pre> <p><a name="index-fftw_005fplan_005fdft_005fr2c_005f1d-185"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f2d-186"></a><a name="index-fftw_005fplan_005fdft_005fr2c_005f3d-187"></a><a name="index-fftw_005fplan_005fdft_005fr2c-188"></a><a name="index-r2c-189"></a> Plan a real-input/complex-output discrete Fourier transform (DFT) in zero or more dimensions, returning an <code>fftw_plan</code> (see <a href="Using-Plans.html#Using-Plans">Using Plans</a>). <p>Once you have created a plan for a certain transform type and parameters, then creating another plan of the same type and parameters, but for different arrays, is fast and shares constant data with the first plan (if it still exists). <p>The planner returns <code>NULL</code> if the plan cannot be created. A non-<code>NULL</code> plan is always returned by the basic interface unless you are using a customized FFTW configuration supporting a restricted set of transforms, or if you use the <code>FFTW_PRESERVE_INPUT</code> flag with a multi-dimensional out-of-place c2r transform (see below). <h5 class="subsubheading">Arguments</h5> <ul> <li><code>rank</code> is the rank of the transform (it should be the size of the array <code>*n</code>), and can be any non-negative integer. (See <a href="Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs">Complex Multi-Dimensional DFTs</a>, for the definition of “rank”.) The ‘<samp><span class="samp">_1d</span></samp>’, ‘<samp><span class="samp">_2d</span></samp>’, and ‘<samp><span class="samp">_3d</span></samp>’ planners correspond to a <code>rank</code> of <code>1</code>, <code>2</code>, and <code>3</code>, respectively. The rank may be zero, which is equivalent to a rank-1 transform of size 1, i.e. a copy of one real number (with zero imaginary part) from input to output. <li><code>n0</code>, <code>n1</code>, <code>n2</code>, or <code>n[0..rank-1]</code>, (as appropriate for each routine) specify the size of the transform dimensions. They can be any positive integer. This is different in general from the <em>physical</em> array dimensions, which are described in <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>. <ul> <li>FFTW is best at handling sizes of the form 2<sup>a</sup> 3<sup>b</sup> 5<sup>c</sup> 7<sup>d</sup> 11<sup>e</sup> 13<sup>f</sup>,where e+f is either 0 or 1, and the other exponents are arbitrary. Other sizes are computed by means of a slow, general-purpose algorithm (which nevertheless retains <i>O</i>(<i>n</i> log <i>n</i>) performance even for prime sizes). (It is possible to customize FFTW for different array sizes; see <a href="Installation-and-Customization.html#Installation-and-Customization">Installation and Customization</a>.) Transforms whose sizes are powers of 2 are especially fast, and it is generally beneficial for the <em>last</em> dimension of an r2c/c2r transform to be <em>even</em>. </ul> <li><code>in</code> and <code>out</code> point to the input and output arrays of the transform, which may be the same (yielding an in-place transform). <a name="index-in_002dplace-190"></a>These arrays are overwritten during planning, unless <code>FFTW_ESTIMATE</code> is used in the flags. (The arrays need not be initialized, but they must be allocated.) For an in-place transform, it is important to remember that the real array will require padding, described in <a href="Real_002ddata-DFT-Array-Format.html#Real_002ddata-DFT-Array-Format">Real-data DFT Array Format</a>. <a name="index-padding-191"></a> <li><a name="index-flags-192"></a><code>flags</code> is a bitwise OR (‘<samp><span class="samp">|</span></samp>’) of zero or more planner flags, as defined in <a href="Planner-Flags.html#Planner-Flags">Planner Flags</a>. </ul> <p>The inverse transforms, taking complex input (storing the non-redundant half of a logically Hermitian array) to real output, are given by: <pre class="example"> fftw_plan fftw_plan_dft_c2r_1d(int n0, fftw_complex *in, double *out, unsigned flags); fftw_plan fftw_plan_dft_c2r_2d(int n0, int n1, fftw_complex *in, double *out, unsigned flags); fftw_plan fftw_plan_dft_c2r_3d(int n0, int n1, int n2, fftw_complex *in, double *out, unsigned flags); fftw_plan fftw_plan_dft_c2r(int rank, const int *n, fftw_complex *in, double *out, unsigned flags); </pre> <p><a name="index-fftw_005fplan_005fdft_005fc2r_005f1d-193"></a><a name="index-fftw_005fplan_005fdft_005fc2r_005f2d-194"></a><a name="index-fftw_005fplan_005fdft_005fc2r_005f3d-195"></a><a name="index-fftw_005fplan_005fdft_005fc2r-196"></a><a name="index-c2r-197"></a> The arguments are the same as for the r2c transforms, except that the input and output data formats are reversed. <p>FFTW computes an unnormalized transform: computing an r2c followed by a c2r transform (or vice versa) will result in the original data multiplied by the size of the transform (the product of the logical dimensions). <a name="index-normalization-198"></a>An r2c transform produces the same output as a <code>FFTW_FORWARD</code> complex DFT of the same input, and a c2r transform is correspondingly equivalent to <code>FFTW_BACKWARD</code>. For more information, see <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>. <!-- =========> --> </body></html>