Mercurial > hg > sv-dependency-builds
view src/fftw-3.3.3/doc/html/Advanced-Complex-DFTs.html @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line source
<html lang="en"> <head> <title>Advanced Complex DFTs - FFTW 3.3.3</title> <meta http-equiv="Content-Type" content="text/html"> <meta name="description" content="FFTW 3.3.3"> <meta name="generator" content="makeinfo 4.13"> <link title="Top" rel="start" href="index.html#Top"> <link rel="up" href="Advanced-Interface.html#Advanced-Interface" title="Advanced Interface"> <link rel="prev" href="Advanced-Interface.html#Advanced-Interface" title="Advanced Interface"> <link rel="next" href="Advanced-Real_002ddata-DFTs.html#Advanced-Real_002ddata-DFTs" title="Advanced Real-data DFTs"> <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage"> <!-- This manual is for FFTW (version 3.3.3, 25 November 2012). Copyright (C) 2003 Matteo Frigo. Copyright (C) 2003 Massachusetts Institute of Technology. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. --> <meta http-equiv="Content-Style-Type" content="text/css"> <style type="text/css"><!-- pre.display { font-family:inherit } pre.format { font-family:inherit } pre.smalldisplay { font-family:inherit; font-size:smaller } pre.smallformat { font-family:inherit; font-size:smaller } pre.smallexample { font-size:smaller } pre.smalllisp { font-size:smaller } span.sc { font-variant:small-caps } span.roman { font-family:serif; font-weight:normal; } span.sansserif { font-family:sans-serif; font-weight:normal; } --></style> </head> <body> <div class="node"> <a name="Advanced-Complex-DFTs"></a> <p> Next: <a rel="next" accesskey="n" href="Advanced-Real_002ddata-DFTs.html#Advanced-Real_002ddata-DFTs">Advanced Real-data DFTs</a>, Previous: <a rel="previous" accesskey="p" href="Advanced-Interface.html#Advanced-Interface">Advanced Interface</a>, Up: <a rel="up" accesskey="u" href="Advanced-Interface.html#Advanced-Interface">Advanced Interface</a> <hr> </div> <h4 class="subsection">4.4.1 Advanced Complex DFTs</h4> <pre class="example"> fftw_plan fftw_plan_many_dft(int rank, const int *n, int howmany, fftw_complex *in, const int *inembed, int istride, int idist, fftw_complex *out, const int *onembed, int ostride, int odist, int sign, unsigned flags); </pre> <p><a name="index-fftw_005fplan_005fmany_005fdft-232"></a> This routine plans multiple multidimensional complex DFTs, and it extends the <code>fftw_plan_dft</code> routine (see <a href="Complex-DFTs.html#Complex-DFTs">Complex DFTs</a>) to compute <code>howmany</code> transforms, each having rank <code>rank</code> and size <code>n</code>. In addition, the transform data need not be contiguous, but it may be laid out in memory with an arbitrary stride. To account for these possibilities, <code>fftw_plan_many_dft</code> adds the new parameters <code>howmany</code>, {<code>i</code>,<code>o</code>}<code>nembed</code>, {<code>i</code>,<code>o</code>}<code>stride</code>, and {<code>i</code>,<code>o</code>}<code>dist</code>. The FFTW basic interface (see <a href="Complex-DFTs.html#Complex-DFTs">Complex DFTs</a>) provides routines specialized for ranks 1, 2, and 3, but the advanced interface handles only the general-rank case. <p><code>howmany</code> is the number of transforms to compute. The resulting plan computes <code>howmany</code> transforms, where the input of the <code>k</code>-th transform is at location <code>in+k*idist</code> (in C pointer arithmetic), and its output is at location <code>out+k*odist</code>. Plans obtained in this way can often be faster than calling FFTW multiple times for the individual transforms. The basic <code>fftw_plan_dft</code> interface corresponds to <code>howmany=1</code> (in which case the <code>dist</code> parameters are ignored). <a name="index-howmany-parameter-233"></a><a name="index-dist-234"></a> <p>Each of the <code>howmany</code> transforms has rank <code>rank</code> and size <code>n</code>, as in the basic interface. In addition, the advanced interface allows the input and output arrays of each transform to be row-major subarrays of larger rank-<code>rank</code> arrays, described by <code>inembed</code> and <code>onembed</code> parameters, respectively. {<code>i</code>,<code>o</code>}<code>nembed</code> must be arrays of length <code>rank</code>, and <code>n</code> should be elementwise less than or equal to {<code>i</code>,<code>o</code>}<code>nembed</code>. Passing <code>NULL</code> for an <code>nembed</code> parameter is equivalent to passing <code>n</code> (i.e. same physical and logical dimensions, as in the basic interface.) <p>The <code>stride</code> parameters indicate that the <code>j</code>-th element of the input or output arrays is located at <code>j*istride</code> or <code>j*ostride</code>, respectively. (For a multi-dimensional array, <code>j</code> is the ordinary row-major index.) When combined with the <code>k</code>-th transform in a <code>howmany</code> loop, from above, this means that the (<code>j</code>,<code>k</code>)-th element is at <code>j*stride+k*dist</code>. (The basic <code>fftw_plan_dft</code> interface corresponds to a stride of 1.) <a name="index-stride-235"></a> <p>For in-place transforms, the input and output <code>stride</code> and <code>dist</code> parameters should be the same; otherwise, the planner may return <code>NULL</code>. <p>Arrays <code>n</code>, <code>inembed</code>, and <code>onembed</code> are not used after this function returns. You can safely free or reuse them. <p><strong>Examples</strong>: One transform of one 5 by 6 array contiguous in memory: <pre class="example"> int rank = 2; int n[] = {5, 6}; int howmany = 1; int idist = odist = 0; /* unused because howmany = 1 */ int istride = ostride = 1; /* array is contiguous in memory */ int *inembed = n, *onembed = n; </pre> <p>Transform of three 5 by 6 arrays, each contiguous in memory, stored in memory one after another: <pre class="example"> int rank = 2; int n[] = {5, 6}; int howmany = 3; int idist = odist = n[0]*n[1]; /* = 30, the distance in memory between the first element of the first array and the first element of the second array */ int istride = ostride = 1; /* array is contiguous in memory */ int *inembed = n, *onembed = n; </pre> <p>Transform each column of a 2d array with 10 rows and 3 columns: <pre class="example"> int rank = 1; /* not 2: we are computing 1d transforms */ int n[] = {10}; /* 1d transforms of length 10 */ int howmany = 3; int idist = odist = 1; int istride = ostride = 3; /* distance between two elements in the same column */ int *inembed = n, *onembed = n; </pre> <!-- =========> --> </body></html>