Mercurial > hg > sv-dependency-builds
view src/fftw-3.3.5/doc/html/What-FFTW-Really-Computes.html @ 42:2cd0e3b3e1fd
Current fftw source
author | Chris Cannam |
---|---|
date | Tue, 18 Oct 2016 13:40:26 +0100 |
parents | |
children |
line wrap: on
line source
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <!-- This manual is for FFTW (version 3.3.5, 30 July 2016). Copyright (C) 2003 Matteo Frigo. Copyright (C) 2003 Massachusetts Institute of Technology. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. --> <!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ --> <head> <title>FFTW 3.3.5: What FFTW Really Computes</title> <meta name="description" content="FFTW 3.3.5: What FFTW Really Computes"> <meta name="keywords" content="FFTW 3.3.5: What FFTW Really Computes"> <meta name="resource-type" content="document"> <meta name="distribution" content="global"> <meta name="Generator" content="makeinfo"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <link href="index.html#Top" rel="start" title="Top"> <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> <link href="FFTW-Reference.html#FFTW-Reference" rel="up" title="FFTW Reference"> <link href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029" rel="next" title="The 1d Discrete Fourier Transform (DFT)"> <link href="Wisdom-Utilities.html#Wisdom-Utilities" rel="prev" title="Wisdom Utilities"> <style type="text/css"> <!-- a.summary-letter {text-decoration: none} blockquote.smallquotation {font-size: smaller} div.display {margin-left: 3.2em} div.example {margin-left: 3.2em} div.indentedblock {margin-left: 3.2em} div.lisp {margin-left: 3.2em} div.smalldisplay {margin-left: 3.2em} div.smallexample {margin-left: 3.2em} div.smallindentedblock {margin-left: 3.2em; font-size: smaller} div.smalllisp {margin-left: 3.2em} kbd {font-style:oblique} pre.display {font-family: inherit} pre.format {font-family: inherit} pre.menu-comment {font-family: serif} pre.menu-preformatted {font-family: serif} pre.smalldisplay {font-family: inherit; font-size: smaller} pre.smallexample {font-size: smaller} pre.smallformat {font-family: inherit; font-size: smaller} pre.smalllisp {font-size: smaller} span.nocodebreak {white-space:nowrap} span.nolinebreak {white-space:nowrap} span.roman {font-family:serif; font-weight:normal} span.sansserif {font-family:sans-serif; font-weight:normal} ul.no-bullet {list-style: none} --> </style> </head> <body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000"> <a name="What-FFTW-Really-Computes"></a> <div class="header"> <p> Previous: <a href="Wisdom.html#Wisdom" accesskey="p" rel="prev">Wisdom</a>, Up: <a href="FFTW-Reference.html#FFTW-Reference" accesskey="u" rel="up">FFTW Reference</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> </div> <hr> <a name="What-FFTW-Really-Computes-1"></a> <h3 class="section">4.8 What FFTW Really Computes</h3> <p>In this section, we provide precise mathematical definitions for the transforms that FFTW computes. These transform definitions are fairly standard, but some authors follow slightly different conventions for the normalization of the transform (the constant factor in front) and the sign of the complex exponent. We begin by presenting the one-dimensional (1d) transform definitions, and then give the straightforward extension to multi-dimensional transforms. </p> <table class="menu" border="0" cellspacing="0"> <tr><td align="left" valign="top">• <a href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029" accesskey="1">The 1d Discrete Fourier Transform (DFT)</a>:</td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="The-1d-Real_002ddata-DFT.html#The-1d-Real_002ddata-DFT" accesskey="2">The 1d Real-data DFT</a>:</td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" accesskey="3">1d Real-even DFTs (DCTs)</a>:</td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029" accesskey="4">1d Real-odd DFTs (DSTs)</a>:</td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html#g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029" accesskey="5">1d Discrete Hartley Transforms (DHTs)</a>:</td><td> </td><td align="left" valign="top"> </td></tr> <tr><td align="left" valign="top">• <a href="Multi_002ddimensional-Transforms.html#Multi_002ddimensional-Transforms" accesskey="6">Multi-dimensional Transforms</a>:</td><td> </td><td align="left" valign="top"> </td></tr> </table> </body> </html>