Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/tests/bench.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/tests/bench.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,552 @@ +/**************************************************************************/ +/* NOTE to users: this is the FFTW self-test and benchmark program. + It is probably NOT a good place to learn FFTW usage, since it has a + lot of added complexity in order to exercise and test the full API, + etcetera. We suggest reading the manual. + + (Some of the self-test code is split off into fftw-bench.c and + hook.c.) */ +/**************************************************************************/ + +#include <math.h> +#include <stdio.h> +#include <string.h> +#include "tests/fftw-bench.h" + +static const char *mkversion(void) { return FFTW(version); } +static const char *mkcc(void) { return FFTW(cc); } +static const char *mkcodelet_optim(void) { return FFTW(codelet_optim); } + +BEGIN_BENCH_DOC +BENCH_DOC("name", "fftw3") +BENCH_DOCF("version", mkversion) +BENCH_DOCF("cc", mkcc) +BENCH_DOCF("codelet-optim", mkcodelet_optim) +END_BENCH_DOC + +static FFTW(iodim) *bench_tensor_to_fftw_iodim(bench_tensor *t) +{ + FFTW(iodim) *d; + int i; + + BENCH_ASSERT(t->rnk >= 0); + if (t->rnk == 0) return 0; + + d = (FFTW(iodim) *)bench_malloc(sizeof(FFTW(iodim)) * t->rnk); + for (i = 0; i < t->rnk; ++i) { + d[i].n = t->dims[i].n; + d[i].is = t->dims[i].is; + d[i].os = t->dims[i].os; + } + + return d; +} + +static void extract_reim_split(int sign, int size, bench_real *p, + bench_real **r, bench_real **i) +{ + if (sign == FFTW_FORWARD) { + *r = p + 0; + *i = p + size; + } else { + *r = p + size; + *i = p + 0; + } +} + +static int sizeof_problem(bench_problem *p) +{ + return tensor_sz(p->sz) * tensor_sz(p->vecsz); +} + +/* ouch */ +static int expressible_as_api_many(bench_tensor *t) +{ + int i; + + BENCH_ASSERT(BENCH_FINITE_RNK(t->rnk)); + + i = t->rnk - 1; + while (--i >= 0) { + bench_iodim *d = t->dims + i; + if (d[0].is % d[1].is) return 0; + if (d[0].os % d[1].os) return 0; + } + return 1; +} + +static int *mkn(bench_tensor *t) +{ + int *n = (int *) bench_malloc(sizeof(int *) * t->rnk); + int i; + for (i = 0; i < t->rnk; ++i) + n[i] = t->dims[i].n; + return n; +} + +static void mknembed_many(bench_tensor *t, int **inembedp, int **onembedp) +{ + int i; + bench_iodim *d; + int *inembed = (int *) bench_malloc(sizeof(int *) * t->rnk); + int *onembed = (int *) bench_malloc(sizeof(int *) * t->rnk); + + BENCH_ASSERT(BENCH_FINITE_RNK(t->rnk)); + *inembedp = inembed; *onembedp = onembed; + + i = t->rnk - 1; + while (--i >= 0) { + d = t->dims + i; + inembed[i+1] = d[0].is / d[1].is; + onembed[i+1] = d[0].os / d[1].os; + } +} + +/* try to use the most appropriate API function. Big mess. */ + +static int imax(int a, int b) { return (a > b ? a : b); } + +static int halfish_sizeof_problem(bench_problem *p) +{ + int n2 = sizeof_problem(p); + if (BENCH_FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0) + n2 = (n2 / imax(p->sz->dims[p->sz->rnk - 1].n, 1)) * + (p->sz->dims[p->sz->rnk - 1].n / 2 + 1); + return n2; +} + +static FFTW(plan) mkplan_real_split(bench_problem *p, unsigned flags) +{ + FFTW(plan) pln; + bench_tensor *sz = p->sz, *vecsz = p->vecsz; + FFTW(iodim) *dims, *howmany_dims; + bench_real *ri, *ii, *ro, *io; + int n2 = halfish_sizeof_problem(p); + + extract_reim_split(FFTW_FORWARD, n2, (bench_real *) p->in, &ri, &ii); + extract_reim_split(FFTW_FORWARD, n2, (bench_real *) p->out, &ro, &io); + + dims = bench_tensor_to_fftw_iodim(sz); + howmany_dims = bench_tensor_to_fftw_iodim(vecsz); + if (p->sign < 0) { + if (verbose > 2) printf("using plan_guru_split_dft_r2c\n"); + pln = FFTW(plan_guru_split_dft_r2c)(sz->rnk, dims, + vecsz->rnk, howmany_dims, + ri, ro, io, flags); + } + else { + if (verbose > 2) printf("using plan_guru_split_dft_c2r\n"); + pln = FFTW(plan_guru_split_dft_c2r)(sz->rnk, dims, + vecsz->rnk, howmany_dims, + ri, ii, ro, flags); + } + bench_free(dims); + bench_free(howmany_dims); + return pln; +} + +static FFTW(plan) mkplan_real_interleaved(bench_problem *p, unsigned flags) +{ + FFTW(plan) pln; + bench_tensor *sz = p->sz, *vecsz = p->vecsz; + + if (vecsz->rnk == 0 && tensor_unitstridep(sz) + && tensor_real_rowmajorp(sz, p->sign, p->in_place)) + goto api_simple; + + if (vecsz->rnk == 1 && expressible_as_api_many(sz)) + goto api_many; + + goto api_guru; + + api_simple: + switch (sz->rnk) { + case 1: + if (p->sign < 0) { + if (verbose > 2) printf("using plan_dft_r2c_1d\n"); + return FFTW(plan_dft_r2c_1d)(sz->dims[0].n, + (bench_real *) p->in, + (bench_complex *) p->out, + flags); + } + else { + if (verbose > 2) printf("using plan_dft_c2r_1d\n"); + return FFTW(plan_dft_c2r_1d)(sz->dims[0].n, + (bench_complex *) p->in, + (bench_real *) p->out, + flags); + } + break; + case 2: + if (p->sign < 0) { + if (verbose > 2) printf("using plan_dft_r2c_2d\n"); + return FFTW(plan_dft_r2c_2d)(sz->dims[0].n, sz->dims[1].n, + (bench_real *) p->in, + (bench_complex *) p->out, + flags); + } + else { + if (verbose > 2) printf("using plan_dft_c2r_2d\n"); + return FFTW(plan_dft_c2r_2d)(sz->dims[0].n, sz->dims[1].n, + (bench_complex *) p->in, + (bench_real *) p->out, + flags); + } + break; + case 3: + if (p->sign < 0) { + if (verbose > 2) printf("using plan_dft_r2c_3d\n"); + return FFTW(plan_dft_r2c_3d)( + sz->dims[0].n, sz->dims[1].n, sz->dims[2].n, + (bench_real *) p->in, (bench_complex *) p->out, + flags); + } + else { + if (verbose > 2) printf("using plan_dft_c2r_3d\n"); + return FFTW(plan_dft_c2r_3d)( + sz->dims[0].n, sz->dims[1].n, sz->dims[2].n, + (bench_complex *) p->in, (bench_real *) p->out, + flags); + } + break; + default: { + int *n = mkn(sz); + if (p->sign < 0) { + if (verbose > 2) printf("using plan_dft_r2c\n"); + pln = FFTW(plan_dft_r2c)(sz->rnk, n, + (bench_real *) p->in, + (bench_complex *) p->out, + flags); + } + else { + if (verbose > 2) printf("using plan_dft_c2r\n"); + pln = FFTW(plan_dft_c2r)(sz->rnk, n, + (bench_complex *) p->in, + (bench_real *) p->out, + flags); + } + bench_free(n); + return pln; + } + } + + api_many: + { + int *n, *inembed, *onembed; + BENCH_ASSERT(vecsz->rnk == 1); + n = mkn(sz); + mknembed_many(sz, &inembed, &onembed); + if (p->sign < 0) { + if (verbose > 2) printf("using plan_many_dft_r2c\n"); + pln = FFTW(plan_many_dft_r2c)( + sz->rnk, n, vecsz->dims[0].n, + (bench_real *) p->in, inembed, + sz->dims[sz->rnk - 1].is, vecsz->dims[0].is, + (bench_complex *) p->out, onembed, + sz->dims[sz->rnk - 1].os, vecsz->dims[0].os, + flags); + } + else { + if (verbose > 2) printf("using plan_many_dft_c2r\n"); + pln = FFTW(plan_many_dft_c2r)( + sz->rnk, n, vecsz->dims[0].n, + (bench_complex *) p->in, inembed, + sz->dims[sz->rnk - 1].is, vecsz->dims[0].is, + (bench_real *) p->out, onembed, + sz->dims[sz->rnk - 1].os, vecsz->dims[0].os, + flags); + } + bench_free(n); bench_free(inembed); bench_free(onembed); + return pln; + } + + api_guru: + { + FFTW(iodim) *dims, *howmany_dims; + + if (p->sign < 0) { + dims = bench_tensor_to_fftw_iodim(sz); + howmany_dims = bench_tensor_to_fftw_iodim(vecsz); + if (verbose > 2) printf("using plan_guru_dft_r2c\n"); + pln = FFTW(plan_guru_dft_r2c)(sz->rnk, dims, + vecsz->rnk, howmany_dims, + (bench_real *) p->in, + (bench_complex *) p->out, + flags); + } + else { + dims = bench_tensor_to_fftw_iodim(sz); + howmany_dims = bench_tensor_to_fftw_iodim(vecsz); + if (verbose > 2) printf("using plan_guru_dft_c2r\n"); + pln = FFTW(plan_guru_dft_c2r)(sz->rnk, dims, + vecsz->rnk, howmany_dims, + (bench_complex *) p->in, + (bench_real *) p->out, + flags); + } + bench_free(dims); + bench_free(howmany_dims); + return pln; + } +} + +static FFTW(plan) mkplan_real(bench_problem *p, unsigned flags) +{ + if (p->split) + return mkplan_real_split(p, flags); + else + return mkplan_real_interleaved(p, flags); +} + +static FFTW(plan) mkplan_complex_split(bench_problem *p, unsigned flags) +{ + FFTW(plan) pln; + bench_tensor *sz = p->sz, *vecsz = p->vecsz; + FFTW(iodim) *dims, *howmany_dims; + bench_real *ri, *ii, *ro, *io; + + extract_reim_split(p->sign, p->iphyssz, (bench_real *) p->in, &ri, &ii); + extract_reim_split(p->sign, p->ophyssz, (bench_real *) p->out, &ro, &io); + + dims = bench_tensor_to_fftw_iodim(sz); + howmany_dims = bench_tensor_to_fftw_iodim(vecsz); + if (verbose > 2) printf("using plan_guru_split_dft\n"); + pln = FFTW(plan_guru_split_dft)(sz->rnk, dims, + vecsz->rnk, howmany_dims, + ri, ii, ro, io, flags); + bench_free(dims); + bench_free(howmany_dims); + return pln; +} + +static FFTW(plan) mkplan_complex_interleaved(bench_problem *p, unsigned flags) +{ + FFTW(plan) pln; + bench_tensor *sz = p->sz, *vecsz = p->vecsz; + + if (vecsz->rnk == 0 && tensor_unitstridep(sz) && tensor_rowmajorp(sz)) + goto api_simple; + + if (vecsz->rnk == 1 && expressible_as_api_many(sz)) + goto api_many; + + goto api_guru; + + api_simple: + switch (sz->rnk) { + case 1: + if (verbose > 2) printf("using plan_dft_1d\n"); + return FFTW(plan_dft_1d)(sz->dims[0].n, + (bench_complex *) p->in, + (bench_complex *) p->out, + p->sign, flags); + break; + case 2: + if (verbose > 2) printf("using plan_dft_2d\n"); + return FFTW(plan_dft_2d)(sz->dims[0].n, sz->dims[1].n, + (bench_complex *) p->in, + (bench_complex *) p->out, + p->sign, flags); + break; + case 3: + if (verbose > 2) printf("using plan_dft_3d\n"); + return FFTW(plan_dft_3d)( + sz->dims[0].n, sz->dims[1].n, sz->dims[2].n, + (bench_complex *) p->in, (bench_complex *) p->out, + p->sign, flags); + break; + default: { + int *n = mkn(sz); + if (verbose > 2) printf("using plan_dft\n"); + pln = FFTW(plan_dft)(sz->rnk, n, + (bench_complex *) p->in, + (bench_complex *) p->out, p->sign, flags); + bench_free(n); + return pln; + } + } + + api_many: + { + int *n, *inembed, *onembed; + BENCH_ASSERT(vecsz->rnk == 1); + n = mkn(sz); + mknembed_many(sz, &inembed, &onembed); + if (verbose > 2) printf("using plan_many_dft\n"); + pln = FFTW(plan_many_dft)( + sz->rnk, n, vecsz->dims[0].n, + (bench_complex *) p->in, + inembed, sz->dims[sz->rnk - 1].is, vecsz->dims[0].is, + (bench_complex *) p->out, + onembed, sz->dims[sz->rnk - 1].os, vecsz->dims[0].os, + p->sign, flags); + bench_free(n); bench_free(inembed); bench_free(onembed); + return pln; + } + + api_guru: + { + FFTW(iodim) *dims, *howmany_dims; + + dims = bench_tensor_to_fftw_iodim(sz); + howmany_dims = bench_tensor_to_fftw_iodim(vecsz); + if (verbose > 2) printf("using plan_guru_dft\n"); + pln = FFTW(plan_guru_dft)(sz->rnk, dims, + vecsz->rnk, howmany_dims, + (bench_complex *) p->in, + (bench_complex *) p->out, + p->sign, flags); + bench_free(dims); + bench_free(howmany_dims); + return pln; + } +} + +static FFTW(plan) mkplan_complex(bench_problem *p, unsigned flags) +{ + if (p->split) + return mkplan_complex_split(p, flags); + else + return mkplan_complex_interleaved(p, flags); +} + +static FFTW(plan) mkplan_r2r(bench_problem *p, unsigned flags) +{ + FFTW(plan) pln; + bench_tensor *sz = p->sz, *vecsz = p->vecsz; + FFTW(r2r_kind) *k; + + k = (FFTW(r2r_kind) *) bench_malloc(sizeof(FFTW(r2r_kind)) * sz->rnk); + { + int i; + for (i = 0; i < sz->rnk; ++i) + switch (p->k[i]) { + case R2R_R2HC: k[i] = FFTW_R2HC; break; + case R2R_HC2R: k[i] = FFTW_HC2R; break; + case R2R_DHT: k[i] = FFTW_DHT; break; + case R2R_REDFT00: k[i] = FFTW_REDFT00; break; + case R2R_REDFT01: k[i] = FFTW_REDFT01; break; + case R2R_REDFT10: k[i] = FFTW_REDFT10; break; + case R2R_REDFT11: k[i] = FFTW_REDFT11; break; + case R2R_RODFT00: k[i] = FFTW_RODFT00; break; + case R2R_RODFT01: k[i] = FFTW_RODFT01; break; + case R2R_RODFT10: k[i] = FFTW_RODFT10; break; + case R2R_RODFT11: k[i] = FFTW_RODFT11; break; + default: BENCH_ASSERT(0); + } + } + + if (vecsz->rnk == 0 && tensor_unitstridep(sz) && tensor_rowmajorp(sz)) + goto api_simple; + + if (vecsz->rnk == 1 && expressible_as_api_many(sz)) + goto api_many; + + goto api_guru; + + api_simple: + switch (sz->rnk) { + case 1: + if (verbose > 2) printf("using plan_r2r_1d\n"); + pln = FFTW(plan_r2r_1d)(sz->dims[0].n, + (bench_real *) p->in, + (bench_real *) p->out, + k[0], flags); + goto done; + case 2: + if (verbose > 2) printf("using plan_r2r_2d\n"); + pln = FFTW(plan_r2r_2d)(sz->dims[0].n, sz->dims[1].n, + (bench_real *) p->in, + (bench_real *) p->out, + k[0], k[1], flags); + goto done; + case 3: + if (verbose > 2) printf("using plan_r2r_3d\n"); + pln = FFTW(plan_r2r_3d)( + sz->dims[0].n, sz->dims[1].n, sz->dims[2].n, + (bench_real *) p->in, (bench_real *) p->out, + k[0], k[1], k[2], flags); + goto done; + default: { + int *n = mkn(sz); + if (verbose > 2) printf("using plan_r2r\n"); + pln = FFTW(plan_r2r)(sz->rnk, n, + (bench_real *) p->in, (bench_real *) p->out, + k, flags); + bench_free(n); + goto done; + } + } + + api_many: + { + int *n, *inembed, *onembed; + BENCH_ASSERT(vecsz->rnk == 1); + n = mkn(sz); + mknembed_many(sz, &inembed, &onembed); + if (verbose > 2) printf("using plan_many_r2r\n"); + pln = FFTW(plan_many_r2r)( + sz->rnk, n, vecsz->dims[0].n, + (bench_real *) p->in, + inembed, sz->dims[sz->rnk - 1].is, vecsz->dims[0].is, + (bench_real *) p->out, + onembed, sz->dims[sz->rnk - 1].os, vecsz->dims[0].os, + k, flags); + bench_free(n); bench_free(inembed); bench_free(onembed); + goto done; + } + + api_guru: + { + FFTW(iodim) *dims, *howmany_dims; + + dims = bench_tensor_to_fftw_iodim(sz); + howmany_dims = bench_tensor_to_fftw_iodim(vecsz); + if (verbose > 2) printf("using plan_guru_r2r\n"); + pln = FFTW(plan_guru_r2r)(sz->rnk, dims, + vecsz->rnk, howmany_dims, + (bench_real *) p->in, + (bench_real *) p->out, k, flags); + bench_free(dims); + bench_free(howmany_dims); + goto done; + } + + done: + bench_free(k); + return pln; +} + +FFTW(plan) mkplan(bench_problem *p, unsigned flags) +{ + switch (p->kind) { + case PROBLEM_COMPLEX: return mkplan_complex(p, flags); + case PROBLEM_REAL: return mkplan_real(p, flags); + case PROBLEM_R2R: return mkplan_r2r(p, flags); + default: BENCH_ASSERT(0); return 0; + } +} + +void main_init(int *argc, char ***argv) +{ + UNUSED(argc); + UNUSED(argv); +} + +void initial_cleanup(void) +{ +} + +void final_cleanup(void) +{ +} + +int import_wisdom(FILE *f) +{ + return FFTW(import_wisdom_from_file)(f); +} + +void export_wisdom(FILE *f) +{ + FFTW(export_wisdom_to_file)(f); +}