diff src/fftw-3.3.8/kernel/primes.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.8/kernel/primes.c	Tue Nov 19 14:52:55 2019 +0000
@@ -0,0 +1,212 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+#include "kernel/ifftw.h"
+
+/***************************************************************************/
+
+/* Rader's algorithm requires lots of modular arithmetic, and if we
+   aren't careful we can have errors due to integer overflows. */
+
+/* Compute (x * y) mod p, but watch out for integer overflows; we must
+   have 0 <= {x, y} < p.
+
+   If overflow is common, this routine is somewhat slower than
+   e.g. using 'long long' arithmetic.  However, it has the advantage
+   of working when INT is 64 bits, and is also faster when overflow is
+   rare.  FFTW calls this via the MULMOD macro, which further
+   optimizes for the case of small integers. 
+*/
+
+#define ADD_MOD(x, y, p) ((x) >= (p) - (y)) ? ((x) + ((y) - (p))) : ((x) + (y))
+
+INT X(safe_mulmod)(INT x, INT y, INT p)
+{
+     INT r;
+
+     if (y > x) 
+	  return X(safe_mulmod)(y, x, p);
+
+     A(0 <= y && x < p);
+
+     r = 0;
+     while (y) {
+	  r = ADD_MOD(r, x*(y&1), p); y >>= 1;
+	  x = ADD_MOD(x, x, p);
+     }
+
+     return r;
+}
+
+/***************************************************************************/
+
+/* Compute n^m mod p, where m >= 0 and p > 0.  If we really cared, we
+   could make this tail-recursive. */
+
+INT X(power_mod)(INT n, INT m, INT p)
+{
+     A(p > 0);
+     if (m == 0)
+	  return 1;
+     else if (m % 2 == 0) {
+	  INT x = X(power_mod)(n, m / 2, p);
+	  return MULMOD(x, x, p);
+     }
+     else
+	  return MULMOD(n, X(power_mod)(n, m - 1, p), p);
+}
+
+/* the following two routines were contributed by Greg Dionne. */
+static INT get_prime_factors(INT n, INT *primef)
+{
+     INT i;
+     INT size = 0;
+
+     A(n % 2 == 0); /* this routine is designed only for even n */
+     primef[size++] = (INT)2;
+     do {
+	  n >>= 1;
+     } while ((n & 1) == 0);
+
+     if (n == 1)
+	  return size;
+
+     for (i = 3; i * i <= n; i += 2)
+	  if (!(n % i)) {
+	       primef[size++] = i;
+	       do {
+		    n /= i;
+	       } while (!(n % i));
+	  }
+     if (n == 1)
+	  return size;
+     primef[size++] = n;
+     return size;
+}
+
+INT X(find_generator)(INT p)
+{
+    INT n, i, size;
+    INT primef[16];     /* smallest number = 32589158477190044730 > 2^64 */
+    INT pm1 = p - 1;
+
+    if (p == 2)
+	 return 1;
+
+    size = get_prime_factors(pm1, primef);
+    n = 2;
+    for (i = 0; i < size; i++)
+        if (X(power_mod)(n, pm1 / primef[i], p) == 1) {
+            i = -1;
+            n++;
+        }
+    return n;
+}
+
+/* Return first prime divisor of n  (It would be at best slightly faster to
+   search a static table of primes; there are 6542 primes < 2^16.)  */
+INT X(first_divisor)(INT n)
+{
+     INT i;
+     if (n <= 1)
+	  return n;
+     if (n % 2 == 0)
+	  return 2;
+     for (i = 3; i*i <= n; i += 2)
+	  if (n % i == 0)
+	       return i;
+     return n;
+}
+
+int X(is_prime)(INT n)
+{
+     return(n > 1 && X(first_divisor)(n) == n);
+}
+
+INT X(next_prime)(INT n)
+{
+     while (!X(is_prime)(n)) ++n;
+     return n;
+}
+
+int X(factors_into)(INT n, const INT *primes)
+{
+     for (; *primes != 0; ++primes) 
+	  while ((n % *primes) == 0) 
+	       n /= *primes;
+     return (n == 1);
+}
+
+/* integer square root.  Return floor(sqrt(N)) */
+INT X(isqrt)(INT n)
+{
+     INT guess, iguess;
+
+     A(n >= 0);
+     if (n == 0) return 0;
+
+     guess = n; iguess = 1;
+
+     do {
+          guess = (guess + iguess) / 2;
+	  iguess = n / guess;
+     } while (guess > iguess);
+
+     return guess;
+}
+
+static INT isqrt_maybe(INT n)
+{
+     INT guess = X(isqrt)(n);
+     return guess * guess == n ? guess : 0;
+}
+
+#define divides(a, b) (((b) % (a)) == 0)
+INT X(choose_radix)(INT r, INT n)
+{
+     if (r > 0) {
+	  if (divides(r, n)) return r;
+	  return 0;
+     } else if (r == 0) {
+	  return X(first_divisor)(n);
+     } else {
+	  /* r is negative.  If n = (-r) * q^2, take q as the radix */
+	  r = 0 - r;
+	  return (n > r && divides(r, n)) ? isqrt_maybe(n / r) : 0;
+     }
+}
+
+/* return A mod N, works for all A including A < 0 */
+INT X(modulo)(INT a, INT n)
+{
+     A(n > 0);
+     if (a >= 0)
+	  return a % n;
+     else
+	  return (n - 1) - ((-(a + (INT)1)) % n);
+}
+
+/* TRUE if N factors into small primes */
+int X(factors_into_small_primes)(INT n)
+{
+     static const INT primes[] = { 2, 3, 5, 0 };
+     return X(factors_into)(n, primes);
+}