Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/kernel/primes.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/kernel/primes.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,212 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + + +#include "kernel/ifftw.h" + +/***************************************************************************/ + +/* Rader's algorithm requires lots of modular arithmetic, and if we + aren't careful we can have errors due to integer overflows. */ + +/* Compute (x * y) mod p, but watch out for integer overflows; we must + have 0 <= {x, y} < p. + + If overflow is common, this routine is somewhat slower than + e.g. using 'long long' arithmetic. However, it has the advantage + of working when INT is 64 bits, and is also faster when overflow is + rare. FFTW calls this via the MULMOD macro, which further + optimizes for the case of small integers. +*/ + +#define ADD_MOD(x, y, p) ((x) >= (p) - (y)) ? ((x) + ((y) - (p))) : ((x) + (y)) + +INT X(safe_mulmod)(INT x, INT y, INT p) +{ + INT r; + + if (y > x) + return X(safe_mulmod)(y, x, p); + + A(0 <= y && x < p); + + r = 0; + while (y) { + r = ADD_MOD(r, x*(y&1), p); y >>= 1; + x = ADD_MOD(x, x, p); + } + + return r; +} + +/***************************************************************************/ + +/* Compute n^m mod p, where m >= 0 and p > 0. If we really cared, we + could make this tail-recursive. */ + +INT X(power_mod)(INT n, INT m, INT p) +{ + A(p > 0); + if (m == 0) + return 1; + else if (m % 2 == 0) { + INT x = X(power_mod)(n, m / 2, p); + return MULMOD(x, x, p); + } + else + return MULMOD(n, X(power_mod)(n, m - 1, p), p); +} + +/* the following two routines were contributed by Greg Dionne. */ +static INT get_prime_factors(INT n, INT *primef) +{ + INT i; + INT size = 0; + + A(n % 2 == 0); /* this routine is designed only for even n */ + primef[size++] = (INT)2; + do { + n >>= 1; + } while ((n & 1) == 0); + + if (n == 1) + return size; + + for (i = 3; i * i <= n; i += 2) + if (!(n % i)) { + primef[size++] = i; + do { + n /= i; + } while (!(n % i)); + } + if (n == 1) + return size; + primef[size++] = n; + return size; +} + +INT X(find_generator)(INT p) +{ + INT n, i, size; + INT primef[16]; /* smallest number = 32589158477190044730 > 2^64 */ + INT pm1 = p - 1; + + if (p == 2) + return 1; + + size = get_prime_factors(pm1, primef); + n = 2; + for (i = 0; i < size; i++) + if (X(power_mod)(n, pm1 / primef[i], p) == 1) { + i = -1; + n++; + } + return n; +} + +/* Return first prime divisor of n (It would be at best slightly faster to + search a static table of primes; there are 6542 primes < 2^16.) */ +INT X(first_divisor)(INT n) +{ + INT i; + if (n <= 1) + return n; + if (n % 2 == 0) + return 2; + for (i = 3; i*i <= n; i += 2) + if (n % i == 0) + return i; + return n; +} + +int X(is_prime)(INT n) +{ + return(n > 1 && X(first_divisor)(n) == n); +} + +INT X(next_prime)(INT n) +{ + while (!X(is_prime)(n)) ++n; + return n; +} + +int X(factors_into)(INT n, const INT *primes) +{ + for (; *primes != 0; ++primes) + while ((n % *primes) == 0) + n /= *primes; + return (n == 1); +} + +/* integer square root. Return floor(sqrt(N)) */ +INT X(isqrt)(INT n) +{ + INT guess, iguess; + + A(n >= 0); + if (n == 0) return 0; + + guess = n; iguess = 1; + + do { + guess = (guess + iguess) / 2; + iguess = n / guess; + } while (guess > iguess); + + return guess; +} + +static INT isqrt_maybe(INT n) +{ + INT guess = X(isqrt)(n); + return guess * guess == n ? guess : 0; +} + +#define divides(a, b) (((b) % (a)) == 0) +INT X(choose_radix)(INT r, INT n) +{ + if (r > 0) { + if (divides(r, n)) return r; + return 0; + } else if (r == 0) { + return X(first_divisor)(n); + } else { + /* r is negative. If n = (-r) * q^2, take q as the radix */ + r = 0 - r; + return (n > r && divides(r, n)) ? isqrt_maybe(n / r) : 0; + } +} + +/* return A mod N, works for all A including A < 0 */ +INT X(modulo)(INT a, INT n) +{ + A(n > 0); + if (a >= 0) + return a % n; + else + return (n - 1) - ((-(a + (INT)1)) % n); +} + +/* TRUE if N factors into small primes */ +int X(factors_into_small_primes)(INT n) +{ + static const INT primes[] = { 2, 3, 5, 0 }; + return X(factors_into)(n, primes); +}