diff src/fftw-3.3.8/dft/simd/common/t1buv_8.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.8/dft/simd/common/t1buv_8.c	Tue Nov 19 14:52:55 2019 +0000
@@ -0,0 +1,220 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Thu May 24 08:05:56 EDT 2018 */
+
+#include "dft/codelet-dft.h"
+
+#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
+
+/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1buv_8 -include dft/simd/t1bu.h -sign 1 */
+
+/*
+ * This function contains 33 FP additions, 24 FP multiplications,
+ * (or, 23 additions, 14 multiplications, 10 fused multiply/add),
+ * 24 stack variables, 1 constants, and 16 memory accesses
+ */
+#include "dft/simd/t1bu.h"
+
+static void t1buv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  R *x;
+	  x = ii;
+	  for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
+	       V T4, Tq, Tl, Tr, T9, Tt, Te, Tu, T1, T3, T2;
+	       T1 = LD(&(x[0]), ms, &(x[0]));
+	       T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
+	       T3 = BYTW(&(W[TWVL * 6]), T2);
+	       T4 = VSUB(T1, T3);
+	       Tq = VADD(T1, T3);
+	       {
+		    V Ti, Tk, Th, Tj;
+		    Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
+		    Ti = BYTW(&(W[TWVL * 2]), Th);
+		    Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
+		    Tk = BYTW(&(W[TWVL * 10]), Tj);
+		    Tl = VSUB(Ti, Tk);
+		    Tr = VADD(Ti, Tk);
+	       }
+	       {
+		    V T6, T8, T5, T7;
+		    T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
+		    T6 = BYTW(&(W[0]), T5);
+		    T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
+		    T8 = BYTW(&(W[TWVL * 8]), T7);
+		    T9 = VSUB(T6, T8);
+		    Tt = VADD(T6, T8);
+	       }
+	       {
+		    V Tb, Td, Ta, Tc;
+		    Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
+		    Tb = BYTW(&(W[TWVL * 12]), Ta);
+		    Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
+		    Td = BYTW(&(W[TWVL * 4]), Tc);
+		    Te = VSUB(Tb, Td);
+		    Tu = VADD(Tb, Td);
+	       }
+	       {
+		    V Ts, Tv, Tw, Tx;
+		    Ts = VSUB(Tq, Tr);
+		    Tv = VSUB(Tt, Tu);
+		    ST(&(x[WS(rs, 6)]), VFNMSI(Tv, Ts), ms, &(x[0]));
+		    ST(&(x[WS(rs, 2)]), VFMAI(Tv, Ts), ms, &(x[0]));
+		    Tw = VADD(Tq, Tr);
+		    Tx = VADD(Tt, Tu);
+		    ST(&(x[WS(rs, 4)]), VSUB(Tw, Tx), ms, &(x[0]));
+		    ST(&(x[0]), VADD(Tw, Tx), ms, &(x[0]));
+		    {
+			 V Tg, To, Tn, Tp, Tf, Tm;
+			 Tf = VADD(T9, Te);
+			 Tg = VFNMS(LDK(KP707106781), Tf, T4);
+			 To = VFMA(LDK(KP707106781), Tf, T4);
+			 Tm = VSUB(T9, Te);
+			 Tn = VFNMS(LDK(KP707106781), Tm, Tl);
+			 Tp = VFMA(LDK(KP707106781), Tm, Tl);
+			 ST(&(x[WS(rs, 3)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)]));
+			 ST(&(x[WS(rs, 7)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)]));
+			 ST(&(x[WS(rs, 5)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)]));
+			 ST(&(x[WS(rs, 1)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)]));
+		    }
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(0, 1),
+     VTW(0, 2),
+     VTW(0, 3),
+     VTW(0, 4),
+     VTW(0, 5),
+     VTW(0, 6),
+     VTW(0, 7),
+     {TW_NEXT, VL, 0}
+};
+
+static const ct_desc desc = { 8, XSIMD_STRING("t1buv_8"), twinstr, &GENUS, {23, 14, 10, 0}, 0, 0, 0 };
+
+void XSIMD(codelet_t1buv_8) (planner *p) {
+     X(kdft_dit_register) (p, t1buv_8, &desc);
+}
+#else
+
+/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1buv_8 -include dft/simd/t1bu.h -sign 1 */
+
+/*
+ * This function contains 33 FP additions, 16 FP multiplications,
+ * (or, 33 additions, 16 multiplications, 0 fused multiply/add),
+ * 24 stack variables, 1 constants, and 16 memory accesses
+ */
+#include "dft/simd/t1bu.h"
+
+static void t1buv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
+     {
+	  INT m;
+	  R *x;
+	  x = ii;
+	  for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
+	       V Tl, Tq, Tg, Tr, T5, Tt, Ta, Tu, Ti, Tk, Tj;
+	       Ti = LD(&(x[0]), ms, &(x[0]));
+	       Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
+	       Tk = BYTW(&(W[TWVL * 6]), Tj);
+	       Tl = VSUB(Ti, Tk);
+	       Tq = VADD(Ti, Tk);
+	       {
+		    V Td, Tf, Tc, Te;
+		    Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
+		    Td = BYTW(&(W[TWVL * 2]), Tc);
+		    Te = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
+		    Tf = BYTW(&(W[TWVL * 10]), Te);
+		    Tg = VSUB(Td, Tf);
+		    Tr = VADD(Td, Tf);
+	       }
+	       {
+		    V T2, T4, T1, T3;
+		    T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
+		    T2 = BYTW(&(W[0]), T1);
+		    T3 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
+		    T4 = BYTW(&(W[TWVL * 8]), T3);
+		    T5 = VSUB(T2, T4);
+		    Tt = VADD(T2, T4);
+	       }
+	       {
+		    V T7, T9, T6, T8;
+		    T6 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
+		    T7 = BYTW(&(W[TWVL * 12]), T6);
+		    T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
+		    T9 = BYTW(&(W[TWVL * 4]), T8);
+		    Ta = VSUB(T7, T9);
+		    Tu = VADD(T7, T9);
+	       }
+	       {
+		    V Ts, Tv, Tw, Tx;
+		    Ts = VSUB(Tq, Tr);
+		    Tv = VBYI(VSUB(Tt, Tu));
+		    ST(&(x[WS(rs, 6)]), VSUB(Ts, Tv), ms, &(x[0]));
+		    ST(&(x[WS(rs, 2)]), VADD(Ts, Tv), ms, &(x[0]));
+		    Tw = VADD(Tq, Tr);
+		    Tx = VADD(Tt, Tu);
+		    ST(&(x[WS(rs, 4)]), VSUB(Tw, Tx), ms, &(x[0]));
+		    ST(&(x[0]), VADD(Tw, Tx), ms, &(x[0]));
+		    {
+			 V Th, To, Tn, Tp, Tb, Tm;
+			 Tb = VMUL(LDK(KP707106781), VSUB(T5, Ta));
+			 Th = VBYI(VSUB(Tb, Tg));
+			 To = VBYI(VADD(Tg, Tb));
+			 Tm = VMUL(LDK(KP707106781), VADD(T5, Ta));
+			 Tn = VSUB(Tl, Tm);
+			 Tp = VADD(Tl, Tm);
+			 ST(&(x[WS(rs, 3)]), VADD(Th, Tn), ms, &(x[WS(rs, 1)]));
+			 ST(&(x[WS(rs, 7)]), VSUB(Tp, To), ms, &(x[WS(rs, 1)]));
+			 ST(&(x[WS(rs, 5)]), VSUB(Tn, Th), ms, &(x[WS(rs, 1)]));
+			 ST(&(x[WS(rs, 1)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
+		    }
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const tw_instr twinstr[] = {
+     VTW(0, 1),
+     VTW(0, 2),
+     VTW(0, 3),
+     VTW(0, 4),
+     VTW(0, 5),
+     VTW(0, 6),
+     VTW(0, 7),
+     {TW_NEXT, VL, 0}
+};
+
+static const ct_desc desc = { 8, XSIMD_STRING("t1buv_8"), twinstr, &GENUS, {33, 16, 0, 0}, 0, 0, 0 };
+
+void XSIMD(codelet_t1buv_8) (planner *p) {
+     X(kdft_dit_register) (p, t1buv_8, &desc);
+}
+#endif