diff src/fftw-3.3.8/dft/simd/common/n1bv_12.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.8/dft/simd/common/n1bv_12.c	Tue Nov 19 14:52:55 2019 +0000
@@ -0,0 +1,256 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Thu May 24 08:04:57 EDT 2018 */
+
+#include "dft/codelet-dft.h"
+
+#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
+
+/* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include dft/simd/n1b.h */
+
+/*
+ * This function contains 48 FP additions, 20 FP multiplications,
+ * (or, 30 additions, 2 multiplications, 18 fused multiply/add),
+ * 27 stack variables, 2 constants, and 24 memory accesses
+ */
+#include "dft/simd/n1b.h"
+
+static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
+{
+     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  const R *xi;
+	  R *xo;
+	  xi = ii;
+	  xo = io;
+	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
+	       V T5, Ta, TJ, TB, Tq, Tp, Tg, Tl, TG, Ty, Tt, Ts;
+	       {
+		    V T1, T6, T4, Tz, T9, TA;
+		    T1 = LD(&(xi[0]), ivs, &(xi[0]));
+		    T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
+		    {
+			 V T2, T3, T7, T8;
+			 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
+			 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
+			 T4 = VADD(T2, T3);
+			 Tz = VSUB(T2, T3);
+			 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
+			 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
+			 T9 = VADD(T7, T8);
+			 TA = VSUB(T7, T8);
+		    }
+		    T5 = VADD(T1, T4);
+		    Ta = VADD(T6, T9);
+		    TJ = VSUB(Tz, TA);
+		    TB = VADD(Tz, TA);
+		    Tq = VFNMS(LDK(KP500000000), T9, T6);
+		    Tp = VFNMS(LDK(KP500000000), T4, T1);
+	       }
+	       {
+		    V Tc, Th, Tf, Tw, Tk, Tx;
+		    Tc = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
+		    Th = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
+		    {
+			 V Td, Te, Ti, Tj;
+			 Td = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
+			 Te = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
+			 Tf = VADD(Td, Te);
+			 Tw = VSUB(Td, Te);
+			 Ti = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
+			 Tj = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
+			 Tk = VADD(Ti, Tj);
+			 Tx = VSUB(Tj, Ti);
+		    }
+		    Tg = VADD(Tc, Tf);
+		    Tl = VADD(Th, Tk);
+		    TG = VADD(Tw, Tx);
+		    Ty = VSUB(Tw, Tx);
+		    Tt = VFNMS(LDK(KP500000000), Tk, Th);
+		    Ts = VFNMS(LDK(KP500000000), Tf, Tc);
+	       }
+	       {
+		    V Tb, Tm, Tn, To;
+		    Tb = VSUB(T5, Ta);
+		    Tm = VSUB(Tg, Tl);
+		    ST(&(xo[WS(os, 3)]), VFNMSI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 9)]), VFMAI(Tm, Tb), ovs, &(xo[WS(os, 1)]));
+		    Tn = VADD(T5, Ta);
+		    To = VADD(Tg, Tl);
+		    ST(&(xo[WS(os, 6)]), VSUB(Tn, To), ovs, &(xo[0]));
+		    ST(&(xo[0]), VADD(Tn, To), ovs, &(xo[0]));
+	       }
+	       {
+		    V TC, TE, Tv, TD, Tr, Tu;
+		    TC = VMUL(LDK(KP866025403), VSUB(Ty, TB));
+		    TE = VMUL(LDK(KP866025403), VADD(TB, Ty));
+		    Tr = VADD(Tp, Tq);
+		    Tu = VADD(Ts, Tt);
+		    Tv = VSUB(Tr, Tu);
+		    TD = VADD(Tr, Tu);
+		    ST(&(xo[WS(os, 10)]), VFNMSI(TC, Tv), ovs, &(xo[0]));
+		    ST(&(xo[WS(os, 4)]), VFMAI(TE, TD), ovs, &(xo[0]));
+		    ST(&(xo[WS(os, 2)]), VFMAI(TC, Tv), ovs, &(xo[0]));
+		    ST(&(xo[WS(os, 8)]), VFNMSI(TE, TD), ovs, &(xo[0]));
+	       }
+	       {
+		    V TH, TL, TK, TM, TF, TI;
+		    TF = VSUB(Tp, Tq);
+		    TH = VFNMS(LDK(KP866025403), TG, TF);
+		    TL = VFMA(LDK(KP866025403), TG, TF);
+		    TI = VSUB(Ts, Tt);
+		    TK = VFMA(LDK(KP866025403), TJ, TI);
+		    TM = VFNMS(LDK(KP866025403), TJ, TI);
+		    ST(&(xo[WS(os, 1)]), VFMAI(TK, TH), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 7)]), VFNMSI(TM, TL), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 11)]), VFNMSI(TK, TH), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 5)]), VFMAI(TM, TL), ovs, &(xo[WS(os, 1)]));
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {30, 2, 18, 0}, &GENUS, 0, 0, 0, 0 };
+
+void XSIMD(codelet_n1bv_12) (planner *p) {
+     X(kdft_register) (p, n1bv_12, &desc);
+}
+
+#else
+
+/* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 12 -name n1bv_12 -include dft/simd/n1b.h */
+
+/*
+ * This function contains 48 FP additions, 8 FP multiplications,
+ * (or, 44 additions, 4 multiplications, 4 fused multiply/add),
+ * 27 stack variables, 2 constants, and 24 memory accesses
+ */
+#include "dft/simd/n1b.h"
+
+static void n1bv_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
+{
+     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  const R *xi;
+	  R *xo;
+	  xi = ii;
+	  xo = io;
+	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
+	       V T5, Ta, TG, TF, Ty, Tm, Ti, Tp, TJ, TI, Tx, Ts;
+	       {
+		    V T1, T6, T4, Tk, T9, Tl;
+		    T1 = LD(&(xi[0]), ivs, &(xi[0]));
+		    T6 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
+		    {
+			 V T2, T3, T7, T8;
+			 T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
+			 T3 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
+			 T4 = VADD(T2, T3);
+			 Tk = VSUB(T2, T3);
+			 T7 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
+			 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
+			 T9 = VADD(T7, T8);
+			 Tl = VSUB(T7, T8);
+		    }
+		    T5 = VFNMS(LDK(KP500000000), T4, T1);
+		    Ta = VFNMS(LDK(KP500000000), T9, T6);
+		    TG = VADD(T6, T9);
+		    TF = VADD(T1, T4);
+		    Ty = VADD(Tk, Tl);
+		    Tm = VMUL(LDK(KP866025403), VSUB(Tk, Tl));
+	       }
+	       {
+		    V Tn, Tq, Te, To, Th, Tr;
+		    Tn = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
+		    Tq = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
+		    {
+			 V Tc, Td, Tf, Tg;
+			 Tc = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
+			 Td = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
+			 Te = VSUB(Tc, Td);
+			 To = VADD(Tc, Td);
+			 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
+			 Tg = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
+			 Th = VSUB(Tf, Tg);
+			 Tr = VADD(Tf, Tg);
+		    }
+		    Ti = VMUL(LDK(KP866025403), VSUB(Te, Th));
+		    Tp = VFNMS(LDK(KP500000000), To, Tn);
+		    TJ = VADD(Tq, Tr);
+		    TI = VADD(Tn, To);
+		    Tx = VADD(Te, Th);
+		    Ts = VFNMS(LDK(KP500000000), Tr, Tq);
+	       }
+	       {
+		    V TH, TK, TL, TM;
+		    TH = VSUB(TF, TG);
+		    TK = VBYI(VSUB(TI, TJ));
+		    ST(&(xo[WS(os, 3)]), VSUB(TH, TK), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 9)]), VADD(TH, TK), ovs, &(xo[WS(os, 1)]));
+		    TL = VADD(TF, TG);
+		    TM = VADD(TI, TJ);
+		    ST(&(xo[WS(os, 6)]), VSUB(TL, TM), ovs, &(xo[0]));
+		    ST(&(xo[0]), VADD(TL, TM), ovs, &(xo[0]));
+	       }
+	       {
+		    V Tj, Tv, Tu, Tw, Tb, Tt;
+		    Tb = VSUB(T5, Ta);
+		    Tj = VSUB(Tb, Ti);
+		    Tv = VADD(Tb, Ti);
+		    Tt = VSUB(Tp, Ts);
+		    Tu = VBYI(VADD(Tm, Tt));
+		    Tw = VBYI(VSUB(Tt, Tm));
+		    ST(&(xo[WS(os, 11)]), VSUB(Tj, Tu), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 5)]), VADD(Tv, Tw), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 1)]), VADD(Tj, Tu), ovs, &(xo[WS(os, 1)]));
+		    ST(&(xo[WS(os, 7)]), VSUB(Tv, Tw), ovs, &(xo[WS(os, 1)]));
+	       }
+	       {
+		    V Tz, TD, TC, TE, TA, TB;
+		    Tz = VBYI(VMUL(LDK(KP866025403), VSUB(Tx, Ty)));
+		    TD = VBYI(VMUL(LDK(KP866025403), VADD(Ty, Tx)));
+		    TA = VADD(T5, Ta);
+		    TB = VADD(Tp, Ts);
+		    TC = VSUB(TA, TB);
+		    TE = VADD(TA, TB);
+		    ST(&(xo[WS(os, 2)]), VADD(Tz, TC), ovs, &(xo[0]));
+		    ST(&(xo[WS(os, 8)]), VSUB(TE, TD), ovs, &(xo[0]));
+		    ST(&(xo[WS(os, 10)]), VSUB(TC, Tz), ovs, &(xo[0]));
+		    ST(&(xo[WS(os, 4)]), VADD(TD, TE), ovs, &(xo[0]));
+	       }
+	  }
+     }
+     VLEAVE();
+}
+
+static const kdft_desc desc = { 12, XSIMD_STRING("n1bv_12"), {44, 4, 4, 0}, &GENUS, 0, 0, 0, 0 };
+
+void XSIMD(codelet_n1bv_12) (planner *p) {
+     X(kdft_register) (p, n1bv_12, &desc);
+}
+
+#endif