Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/dft/scalar/codelets/t2_16.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/dft/scalar/codelets/t2_16.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,836 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:04:19 EDT 2018 */ + +#include "dft/codelet-dft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -name t2_16 -include dft/scalar/t.h */ + +/* + * This function contains 196 FP additions, 134 FP multiplications, + * (or, 104 additions, 42 multiplications, 92 fused multiply/add), + * 90 stack variables, 3 constants, and 64 memory accesses + */ +#include "dft/scalar/t.h" + +static void t2_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP414213562, +0.414213562373095048801688724209698078569671875); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) { + E T2, Tf, TM, TO, T3, T6, T5, Th, Tz, Ti, T7, TZ, TT, Tq, TW; + E Tb, Tu, TP, TI, TF, TC, T1z, T1O, T1D, T1L, Tm, T1f, T1p, T1j, T1m; + { + E TN, TS, T4, Tp, Ta, Tt, Tl, Tg; + T2 = W[0]; + Tf = W[2]; + Tg = T2 * Tf; + TM = W[6]; + TN = T2 * TM; + TO = W[7]; + TS = T2 * TO; + T3 = W[4]; + T4 = T2 * T3; + Tp = Tf * T3; + T6 = W[5]; + Ta = T2 * T6; + Tt = Tf * T6; + T5 = W[1]; + Th = W[3]; + Tl = T2 * Th; + Tz = FMA(T5, Th, Tg); + Ti = FNMS(T5, Th, Tg); + T7 = FMA(T5, T6, T4); + TZ = FNMS(Th, T3, Tt); + TT = FNMS(T5, TM, TS); + Tq = FNMS(Th, T6, Tp); + TW = FMA(Th, T6, Tp); + Tb = FNMS(T5, T3, Ta); + Tu = FMA(Th, T3, Tt); + TP = FMA(T5, TO, TN); + TI = FMA(T5, T3, Ta); + TF = FNMS(T5, T6, T4); + { + E T1y, T1C, T1e, T1i; + T1y = Tz * T3; + T1C = Tz * T6; + TC = FNMS(T5, Tf, Tl); + T1z = FMA(TC, T6, T1y); + T1O = FMA(TC, T3, T1C); + T1D = FNMS(TC, T3, T1C); + T1L = FNMS(TC, T6, T1y); + T1e = Ti * T3; + T1i = Ti * T6; + Tm = FMA(T5, Tf, Tl); + T1f = FMA(Tm, T6, T1e); + T1p = FMA(Tm, T3, T1i); + T1j = FNMS(Tm, T3, T1i); + T1m = FNMS(Tm, T6, T1e); + } + } + { + E Te, T1U, T3A, T3L, T1G, T2D, T2A, T3h, T1R, T2B, T2I, T3i, Tx, T3M, T1Z; + E T3w, TL, T26, T25, T37, T1d, T2o, T2l, T3c, T1s, T2m, T2t, T3d, T12, T28; + E T2d, T38; + { + E T1, T3z, T8, T9, Tc, T3x, Td, T3y; + T1 = ri[0]; + T3z = ii[0]; + T8 = ri[WS(rs, 8)]; + T9 = T7 * T8; + Tc = ii[WS(rs, 8)]; + T3x = T7 * Tc; + Td = FMA(Tb, Tc, T9); + Te = T1 + Td; + T1U = T1 - Td; + T3y = FNMS(Tb, T8, T3x); + T3A = T3y + T3z; + T3L = T3z - T3y; + } + { + E T1u, T1v, T1w, T2w, T1A, T1B, T1E, T2y; + T1u = ri[WS(rs, 15)]; + T1v = TM * T1u; + T1w = ii[WS(rs, 15)]; + T2w = TM * T1w; + T1A = ri[WS(rs, 7)]; + T1B = T1z * T1A; + T1E = ii[WS(rs, 7)]; + T2y = T1z * T1E; + { + E T1x, T1F, T2x, T2z; + T1x = FMA(TO, T1w, T1v); + T1F = FMA(T1D, T1E, T1B); + T1G = T1x + T1F; + T2D = T1x - T1F; + T2x = FNMS(TO, T1u, T2w); + T2z = FNMS(T1D, T1A, T2y); + T2A = T2x - T2z; + T3h = T2x + T2z; + } + } + { + E T1H, T1I, T1J, T2E, T1M, T1N, T1P, T2G; + T1H = ri[WS(rs, 3)]; + T1I = Tf * T1H; + T1J = ii[WS(rs, 3)]; + T2E = Tf * T1J; + T1M = ri[WS(rs, 11)]; + T1N = T1L * T1M; + T1P = ii[WS(rs, 11)]; + T2G = T1L * T1P; + { + E T1K, T1Q, T2F, T2H; + T1K = FMA(Th, T1J, T1I); + T1Q = FMA(T1O, T1P, T1N); + T1R = T1K + T1Q; + T2B = T1K - T1Q; + T2F = FNMS(Th, T1H, T2E); + T2H = FNMS(T1O, T1M, T2G); + T2I = T2F - T2H; + T3i = T2F + T2H; + } + } + { + E Tj, Tk, Tn, T1V, Tr, Ts, Tv, T1X; + Tj = ri[WS(rs, 4)]; + Tk = Ti * Tj; + Tn = ii[WS(rs, 4)]; + T1V = Ti * Tn; + Tr = ri[WS(rs, 12)]; + Ts = Tq * Tr; + Tv = ii[WS(rs, 12)]; + T1X = Tq * Tv; + { + E To, Tw, T1W, T1Y; + To = FMA(Tm, Tn, Tk); + Tw = FMA(Tu, Tv, Ts); + Tx = To + Tw; + T3M = To - Tw; + T1W = FNMS(Tm, Tj, T1V); + T1Y = FNMS(Tu, Tr, T1X); + T1Z = T1W - T1Y; + T3w = T1W + T1Y; + } + } + { + E TA, TB, TD, T21, TG, TH, TJ, T23; + TA = ri[WS(rs, 2)]; + TB = Tz * TA; + TD = ii[WS(rs, 2)]; + T21 = Tz * TD; + TG = ri[WS(rs, 10)]; + TH = TF * TG; + TJ = ii[WS(rs, 10)]; + T23 = TF * TJ; + { + E TE, TK, T22, T24; + TE = FMA(TC, TD, TB); + TK = FMA(TI, TJ, TH); + TL = TE + TK; + T26 = TE - TK; + T22 = FNMS(TC, TA, T21); + T24 = FNMS(TI, TG, T23); + T25 = T22 - T24; + T37 = T22 + T24; + } + } + { + E T15, T16, T17, T2h, T19, T1a, T1b, T2j; + T15 = ri[WS(rs, 1)]; + T16 = T2 * T15; + T17 = ii[WS(rs, 1)]; + T2h = T2 * T17; + T19 = ri[WS(rs, 9)]; + T1a = T3 * T19; + T1b = ii[WS(rs, 9)]; + T2j = T3 * T1b; + { + E T18, T1c, T2i, T2k; + T18 = FMA(T5, T17, T16); + T1c = FMA(T6, T1b, T1a); + T1d = T18 + T1c; + T2o = T18 - T1c; + T2i = FNMS(T5, T15, T2h); + T2k = FNMS(T6, T19, T2j); + T2l = T2i - T2k; + T3c = T2i + T2k; + } + } + { + E T1g, T1h, T1k, T2p, T1n, T1o, T1q, T2r; + T1g = ri[WS(rs, 5)]; + T1h = T1f * T1g; + T1k = ii[WS(rs, 5)]; + T2p = T1f * T1k; + T1n = ri[WS(rs, 13)]; + T1o = T1m * T1n; + T1q = ii[WS(rs, 13)]; + T2r = T1m * T1q; + { + E T1l, T1r, T2q, T2s; + T1l = FMA(T1j, T1k, T1h); + T1r = FMA(T1p, T1q, T1o); + T1s = T1l + T1r; + T2m = T1l - T1r; + T2q = FNMS(T1j, T1g, T2p); + T2s = FNMS(T1p, T1n, T2r); + T2t = T2q - T2s; + T3d = T2q + T2s; + } + } + { + E TQ, TR, TU, T29, TX, TY, T10, T2b; + TQ = ri[WS(rs, 14)]; + TR = TP * TQ; + TU = ii[WS(rs, 14)]; + T29 = TP * TU; + TX = ri[WS(rs, 6)]; + TY = TW * TX; + T10 = ii[WS(rs, 6)]; + T2b = TW * T10; + { + E TV, T11, T2a, T2c; + TV = FMA(TT, TU, TR); + T11 = FMA(TZ, T10, TY); + T12 = TV + T11; + T28 = TV - T11; + T2a = FNMS(TT, TQ, T29); + T2c = FNMS(TZ, TX, T2b); + T2d = T2a - T2c; + T38 = T2a + T2c; + } + } + { + E T14, T3q, T3C, T3E, T1T, T3D, T3t, T3u; + { + E Ty, T13, T3v, T3B; + Ty = Te + Tx; + T13 = TL + T12; + T14 = Ty + T13; + T3q = Ty - T13; + T3v = T37 + T38; + T3B = T3w + T3A; + T3C = T3v + T3B; + T3E = T3B - T3v; + } + { + E T1t, T1S, T3r, T3s; + T1t = T1d + T1s; + T1S = T1G + T1R; + T1T = T1t + T1S; + T3D = T1S - T1t; + T3r = T3c + T3d; + T3s = T3h + T3i; + T3t = T3r - T3s; + T3u = T3r + T3s; + } + ri[WS(rs, 8)] = T14 - T1T; + ii[WS(rs, 8)] = T3C - T3u; + ri[0] = T14 + T1T; + ii[0] = T3u + T3C; + ri[WS(rs, 12)] = T3q - T3t; + ii[WS(rs, 12)] = T3E - T3D; + ri[WS(rs, 4)] = T3q + T3t; + ii[WS(rs, 4)] = T3D + T3E; + } + { + E T3a, T3m, T3H, T3J, T3f, T3n, T3k, T3o; + { + E T36, T39, T3F, T3G; + T36 = Te - Tx; + T39 = T37 - T38; + T3a = T36 + T39; + T3m = T36 - T39; + T3F = T12 - TL; + T3G = T3A - T3w; + T3H = T3F + T3G; + T3J = T3G - T3F; + } + { + E T3b, T3e, T3g, T3j; + T3b = T1d - T1s; + T3e = T3c - T3d; + T3f = T3b + T3e; + T3n = T3e - T3b; + T3g = T1G - T1R; + T3j = T3h - T3i; + T3k = T3g - T3j; + T3o = T3g + T3j; + } + { + E T3l, T3I, T3p, T3K; + T3l = T3f + T3k; + ri[WS(rs, 10)] = FNMS(KP707106781, T3l, T3a); + ri[WS(rs, 2)] = FMA(KP707106781, T3l, T3a); + T3I = T3n + T3o; + ii[WS(rs, 2)] = FMA(KP707106781, T3I, T3H); + ii[WS(rs, 10)] = FNMS(KP707106781, T3I, T3H); + T3p = T3n - T3o; + ri[WS(rs, 14)] = FNMS(KP707106781, T3p, T3m); + ri[WS(rs, 6)] = FMA(KP707106781, T3p, T3m); + T3K = T3k - T3f; + ii[WS(rs, 6)] = FMA(KP707106781, T3K, T3J); + ii[WS(rs, 14)] = FNMS(KP707106781, T3K, T3J); + } + } + { + E T20, T3N, T3T, T2Q, T2f, T3O, T30, T34, T2T, T3U, T2v, T2N, T2X, T33, T2K; + E T2O; + { + E T27, T2e, T2n, T2u; + T20 = T1U - T1Z; + T3N = T3L - T3M; + T3T = T3M + T3L; + T2Q = T1U + T1Z; + T27 = T25 - T26; + T2e = T28 + T2d; + T2f = T27 - T2e; + T3O = T27 + T2e; + { + E T2Y, T2Z, T2R, T2S; + T2Y = T2D + T2I; + T2Z = T2A - T2B; + T30 = FNMS(KP414213562, T2Z, T2Y); + T34 = FMA(KP414213562, T2Y, T2Z); + T2R = T26 + T25; + T2S = T28 - T2d; + T2T = T2R + T2S; + T3U = T2S - T2R; + } + T2n = T2l + T2m; + T2u = T2o - T2t; + T2v = FMA(KP414213562, T2u, T2n); + T2N = FNMS(KP414213562, T2n, T2u); + { + E T2V, T2W, T2C, T2J; + T2V = T2o + T2t; + T2W = T2l - T2m; + T2X = FMA(KP414213562, T2W, T2V); + T33 = FNMS(KP414213562, T2V, T2W); + T2C = T2A + T2B; + T2J = T2D - T2I; + T2K = FNMS(KP414213562, T2J, T2C); + T2O = FMA(KP414213562, T2C, T2J); + } + } + { + E T2g, T2L, T3V, T3W; + T2g = FMA(KP707106781, T2f, T20); + T2L = T2v - T2K; + ri[WS(rs, 11)] = FNMS(KP923879532, T2L, T2g); + ri[WS(rs, 3)] = FMA(KP923879532, T2L, T2g); + T3V = FMA(KP707106781, T3U, T3T); + T3W = T2O - T2N; + ii[WS(rs, 3)] = FMA(KP923879532, T3W, T3V); + ii[WS(rs, 11)] = FNMS(KP923879532, T3W, T3V); + } + { + E T2M, T2P, T3X, T3Y; + T2M = FNMS(KP707106781, T2f, T20); + T2P = T2N + T2O; + ri[WS(rs, 7)] = FNMS(KP923879532, T2P, T2M); + ri[WS(rs, 15)] = FMA(KP923879532, T2P, T2M); + T3X = FNMS(KP707106781, T3U, T3T); + T3Y = T2v + T2K; + ii[WS(rs, 7)] = FNMS(KP923879532, T3Y, T3X); + ii[WS(rs, 15)] = FMA(KP923879532, T3Y, T3X); + } + { + E T2U, T31, T3P, T3Q; + T2U = FMA(KP707106781, T2T, T2Q); + T31 = T2X + T30; + ri[WS(rs, 9)] = FNMS(KP923879532, T31, T2U); + ri[WS(rs, 1)] = FMA(KP923879532, T31, T2U); + T3P = FMA(KP707106781, T3O, T3N); + T3Q = T33 + T34; + ii[WS(rs, 1)] = FMA(KP923879532, T3Q, T3P); + ii[WS(rs, 9)] = FNMS(KP923879532, T3Q, T3P); + } + { + E T32, T35, T3R, T3S; + T32 = FNMS(KP707106781, T2T, T2Q); + T35 = T33 - T34; + ri[WS(rs, 13)] = FNMS(KP923879532, T35, T32); + ri[WS(rs, 5)] = FMA(KP923879532, T35, T32); + T3R = FNMS(KP707106781, T3O, T3N); + T3S = T30 - T2X; + ii[WS(rs, 5)] = FMA(KP923879532, T3S, T3R); + ii[WS(rs, 13)] = FNMS(KP923879532, T3S, T3R); + } + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 0, 1}, + {TW_CEXP, 0, 3}, + {TW_CEXP, 0, 9}, + {TW_CEXP, 0, 15}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 16, "t2_16", twinstr, &GENUS, {104, 42, 92, 0}, 0, 0, 0 }; + +void X(codelet_t2_16) (planner *p) { + X(kdft_dit_register) (p, t2_16, &desc); +} +#else + +/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -name t2_16 -include dft/scalar/t.h */ + +/* + * This function contains 196 FP additions, 108 FP multiplications, + * (or, 156 additions, 68 multiplications, 40 fused multiply/add), + * 82 stack variables, 3 constants, and 64 memory accesses + */ +#include "dft/scalar/t.h" + +static void t2_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) { + E T2, T5, Tg, Ti, Tk, To, TE, TC, T6, T3, T8, TW, TJ, Tt, TU; + E Tc, Tx, TH, TN, TO, TP, TR, T1f, T1k, T1b, T1i, T1y, T1H, T1u, T1F; + { + E T7, Tv, Ta, Ts, T4, Tw, Tb, Tr; + { + E Th, Tn, Tj, Tm; + T2 = W[0]; + T5 = W[1]; + Tg = W[2]; + Ti = W[3]; + Th = T2 * Tg; + Tn = T5 * Tg; + Tj = T5 * Ti; + Tm = T2 * Ti; + Tk = Th - Tj; + To = Tm + Tn; + TE = Tm - Tn; + TC = Th + Tj; + T6 = W[5]; + T7 = T5 * T6; + Tv = Tg * T6; + Ta = T2 * T6; + Ts = Ti * T6; + T3 = W[4]; + T4 = T2 * T3; + Tw = Ti * T3; + Tb = T5 * T3; + Tr = Tg * T3; + } + T8 = T4 + T7; + TW = Tv - Tw; + TJ = Ta + Tb; + Tt = Tr - Ts; + TU = Tr + Ts; + Tc = Ta - Tb; + Tx = Tv + Tw; + TH = T4 - T7; + TN = W[6]; + TO = W[7]; + TP = FMA(T2, TN, T5 * TO); + TR = FNMS(T5, TN, T2 * TO); + { + E T1d, T1e, T19, T1a; + T1d = Tk * T6; + T1e = To * T3; + T1f = T1d - T1e; + T1k = T1d + T1e; + T19 = Tk * T3; + T1a = To * T6; + T1b = T19 + T1a; + T1i = T19 - T1a; + } + { + E T1w, T1x, T1s, T1t; + T1w = TC * T6; + T1x = TE * T3; + T1y = T1w - T1x; + T1H = T1w + T1x; + T1s = TC * T3; + T1t = TE * T6; + T1u = T1s + T1t; + T1F = T1s - T1t; + } + } + { + E Tf, T3r, T1N, T3e, TA, T3s, T1Q, T3b, TM, T2M, T1W, T2w, TZ, T2N, T21; + E T2x, T1B, T1K, T2V, T2W, T2X, T2Y, T2j, T2D, T2o, T2E, T18, T1n, T2Q, T2R; + E T2S, T2T, T28, T2A, T2d, T2B; + { + E T1, T3d, Te, T3c, T9, Td; + T1 = ri[0]; + T3d = ii[0]; + T9 = ri[WS(rs, 8)]; + Td = ii[WS(rs, 8)]; + Te = FMA(T8, T9, Tc * Td); + T3c = FNMS(Tc, T9, T8 * Td); + Tf = T1 + Te; + T3r = T3d - T3c; + T1N = T1 - Te; + T3e = T3c + T3d; + } + { + E Tq, T1O, Tz, T1P; + { + E Tl, Tp, Tu, Ty; + Tl = ri[WS(rs, 4)]; + Tp = ii[WS(rs, 4)]; + Tq = FMA(Tk, Tl, To * Tp); + T1O = FNMS(To, Tl, Tk * Tp); + Tu = ri[WS(rs, 12)]; + Ty = ii[WS(rs, 12)]; + Tz = FMA(Tt, Tu, Tx * Ty); + T1P = FNMS(Tx, Tu, Tt * Ty); + } + TA = Tq + Tz; + T3s = Tq - Tz; + T1Q = T1O - T1P; + T3b = T1O + T1P; + } + { + E TG, T1S, TL, T1T, T1U, T1V; + { + E TD, TF, TI, TK; + TD = ri[WS(rs, 2)]; + TF = ii[WS(rs, 2)]; + TG = FMA(TC, TD, TE * TF); + T1S = FNMS(TE, TD, TC * TF); + TI = ri[WS(rs, 10)]; + TK = ii[WS(rs, 10)]; + TL = FMA(TH, TI, TJ * TK); + T1T = FNMS(TJ, TI, TH * TK); + } + TM = TG + TL; + T2M = T1S + T1T; + T1U = T1S - T1T; + T1V = TG - TL; + T1W = T1U - T1V; + T2w = T1V + T1U; + } + { + E TT, T1Y, TY, T1Z, T1X, T20; + { + E TQ, TS, TV, TX; + TQ = ri[WS(rs, 14)]; + TS = ii[WS(rs, 14)]; + TT = FMA(TP, TQ, TR * TS); + T1Y = FNMS(TR, TQ, TP * TS); + TV = ri[WS(rs, 6)]; + TX = ii[WS(rs, 6)]; + TY = FMA(TU, TV, TW * TX); + T1Z = FNMS(TW, TV, TU * TX); + } + TZ = TT + TY; + T2N = T1Y + T1Z; + T1X = TT - TY; + T20 = T1Y - T1Z; + T21 = T1X + T20; + T2x = T1X - T20; + } + { + E T1r, T2k, T1J, T2h, T1A, T2l, T1E, T2g; + { + E T1p, T1q, T1G, T1I; + T1p = ri[WS(rs, 15)]; + T1q = ii[WS(rs, 15)]; + T1r = FMA(TN, T1p, TO * T1q); + T2k = FNMS(TO, T1p, TN * T1q); + T1G = ri[WS(rs, 11)]; + T1I = ii[WS(rs, 11)]; + T1J = FMA(T1F, T1G, T1H * T1I); + T2h = FNMS(T1H, T1G, T1F * T1I); + } + { + E T1v, T1z, T1C, T1D; + T1v = ri[WS(rs, 7)]; + T1z = ii[WS(rs, 7)]; + T1A = FMA(T1u, T1v, T1y * T1z); + T2l = FNMS(T1y, T1v, T1u * T1z); + T1C = ri[WS(rs, 3)]; + T1D = ii[WS(rs, 3)]; + T1E = FMA(Tg, T1C, Ti * T1D); + T2g = FNMS(Ti, T1C, Tg * T1D); + } + T1B = T1r + T1A; + T1K = T1E + T1J; + T2V = T1B - T1K; + T2W = T2k + T2l; + T2X = T2g + T2h; + T2Y = T2W - T2X; + { + E T2f, T2i, T2m, T2n; + T2f = T1r - T1A; + T2i = T2g - T2h; + T2j = T2f - T2i; + T2D = T2f + T2i; + T2m = T2k - T2l; + T2n = T1E - T1J; + T2o = T2m + T2n; + T2E = T2m - T2n; + } + } + { + E T14, T24, T1m, T2b, T17, T25, T1h, T2a; + { + E T12, T13, T1j, T1l; + T12 = ri[WS(rs, 1)]; + T13 = ii[WS(rs, 1)]; + T14 = FMA(T2, T12, T5 * T13); + T24 = FNMS(T5, T12, T2 * T13); + T1j = ri[WS(rs, 13)]; + T1l = ii[WS(rs, 13)]; + T1m = FMA(T1i, T1j, T1k * T1l); + T2b = FNMS(T1k, T1j, T1i * T1l); + } + { + E T15, T16, T1c, T1g; + T15 = ri[WS(rs, 9)]; + T16 = ii[WS(rs, 9)]; + T17 = FMA(T3, T15, T6 * T16); + T25 = FNMS(T6, T15, T3 * T16); + T1c = ri[WS(rs, 5)]; + T1g = ii[WS(rs, 5)]; + T1h = FMA(T1b, T1c, T1f * T1g); + T2a = FNMS(T1f, T1c, T1b * T1g); + } + T18 = T14 + T17; + T1n = T1h + T1m; + T2Q = T18 - T1n; + T2R = T24 + T25; + T2S = T2a + T2b; + T2T = T2R - T2S; + { + E T26, T27, T29, T2c; + T26 = T24 - T25; + T27 = T1h - T1m; + T28 = T26 + T27; + T2A = T26 - T27; + T29 = T14 - T17; + T2c = T2a - T2b; + T2d = T29 - T2c; + T2B = T29 + T2c; + } + } + { + E T23, T2r, T3A, T3C, T2q, T3B, T2u, T3x; + { + E T1R, T22, T3y, T3z; + T1R = T1N - T1Q; + T22 = KP707106781 * (T1W - T21); + T23 = T1R + T22; + T2r = T1R - T22; + T3y = KP707106781 * (T2x - T2w); + T3z = T3s + T3r; + T3A = T3y + T3z; + T3C = T3z - T3y; + } + { + E T2e, T2p, T2s, T2t; + T2e = FMA(KP923879532, T28, KP382683432 * T2d); + T2p = FNMS(KP923879532, T2o, KP382683432 * T2j); + T2q = T2e + T2p; + T3B = T2p - T2e; + T2s = FNMS(KP923879532, T2d, KP382683432 * T28); + T2t = FMA(KP382683432, T2o, KP923879532 * T2j); + T2u = T2s - T2t; + T3x = T2s + T2t; + } + ri[WS(rs, 11)] = T23 - T2q; + ii[WS(rs, 11)] = T3A - T3x; + ri[WS(rs, 3)] = T23 + T2q; + ii[WS(rs, 3)] = T3x + T3A; + ri[WS(rs, 15)] = T2r - T2u; + ii[WS(rs, 15)] = T3C - T3B; + ri[WS(rs, 7)] = T2r + T2u; + ii[WS(rs, 7)] = T3B + T3C; + } + { + E T2P, T31, T3m, T3o, T30, T3n, T34, T3j; + { + E T2L, T2O, T3k, T3l; + T2L = Tf - TA; + T2O = T2M - T2N; + T2P = T2L + T2O; + T31 = T2L - T2O; + T3k = TZ - TM; + T3l = T3e - T3b; + T3m = T3k + T3l; + T3o = T3l - T3k; + } + { + E T2U, T2Z, T32, T33; + T2U = T2Q + T2T; + T2Z = T2V - T2Y; + T30 = KP707106781 * (T2U + T2Z); + T3n = KP707106781 * (T2Z - T2U); + T32 = T2T - T2Q; + T33 = T2V + T2Y; + T34 = KP707106781 * (T32 - T33); + T3j = KP707106781 * (T32 + T33); + } + ri[WS(rs, 10)] = T2P - T30; + ii[WS(rs, 10)] = T3m - T3j; + ri[WS(rs, 2)] = T2P + T30; + ii[WS(rs, 2)] = T3j + T3m; + ri[WS(rs, 14)] = T31 - T34; + ii[WS(rs, 14)] = T3o - T3n; + ri[WS(rs, 6)] = T31 + T34; + ii[WS(rs, 6)] = T3n + T3o; + } + { + E T2z, T2H, T3u, T3w, T2G, T3v, T2K, T3p; + { + E T2v, T2y, T3q, T3t; + T2v = T1N + T1Q; + T2y = KP707106781 * (T2w + T2x); + T2z = T2v + T2y; + T2H = T2v - T2y; + T3q = KP707106781 * (T1W + T21); + T3t = T3r - T3s; + T3u = T3q + T3t; + T3w = T3t - T3q; + } + { + E T2C, T2F, T2I, T2J; + T2C = FMA(KP382683432, T2A, KP923879532 * T2B); + T2F = FNMS(KP382683432, T2E, KP923879532 * T2D); + T2G = T2C + T2F; + T3v = T2F - T2C; + T2I = FNMS(KP382683432, T2B, KP923879532 * T2A); + T2J = FMA(KP923879532, T2E, KP382683432 * T2D); + T2K = T2I - T2J; + T3p = T2I + T2J; + } + ri[WS(rs, 9)] = T2z - T2G; + ii[WS(rs, 9)] = T3u - T3p; + ri[WS(rs, 1)] = T2z + T2G; + ii[WS(rs, 1)] = T3p + T3u; + ri[WS(rs, 13)] = T2H - T2K; + ii[WS(rs, 13)] = T3w - T3v; + ri[WS(rs, 5)] = T2H + T2K; + ii[WS(rs, 5)] = T3v + T3w; + } + { + E T11, T35, T3g, T3i, T1M, T3h, T38, T39; + { + E TB, T10, T3a, T3f; + TB = Tf + TA; + T10 = TM + TZ; + T11 = TB + T10; + T35 = TB - T10; + T3a = T2M + T2N; + T3f = T3b + T3e; + T3g = T3a + T3f; + T3i = T3f - T3a; + } + { + E T1o, T1L, T36, T37; + T1o = T18 + T1n; + T1L = T1B + T1K; + T1M = T1o + T1L; + T3h = T1L - T1o; + T36 = T2R + T2S; + T37 = T2W + T2X; + T38 = T36 - T37; + T39 = T36 + T37; + } + ri[WS(rs, 8)] = T11 - T1M; + ii[WS(rs, 8)] = T3g - T39; + ri[0] = T11 + T1M; + ii[0] = T39 + T3g; + ri[WS(rs, 12)] = T35 - T38; + ii[WS(rs, 12)] = T3i - T3h; + ri[WS(rs, 4)] = T35 + T38; + ii[WS(rs, 4)] = T3h + T3i; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 0, 1}, + {TW_CEXP, 0, 3}, + {TW_CEXP, 0, 9}, + {TW_CEXP, 0, 15}, + {TW_NEXT, 1, 0} +}; + +static const ct_desc desc = { 16, "t2_16", twinstr, &GENUS, {156, 68, 40, 0}, 0, 0, 0 }; + +void X(codelet_t2_16) (planner *p) { + X(kdft_dit_register) (p, t2_16, &desc); +} +#endif