Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/dft/scalar/codelets/n1_9.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/dft/scalar/codelets/n1_9.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,362 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:04:10 EDT 2018 */ + +#include "dft/codelet-dft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name n1_9 -include dft/scalar/n.h */ + +/* + * This function contains 80 FP additions, 56 FP multiplications, + * (or, 24 additions, 0 multiplications, 56 fused multiply/add), + * 41 stack variables, 10 constants, and 36 memory accesses + */ +#include "dft/scalar/n.h" + +static void n1_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DK(KP954188894, +0.954188894138671133499268364187245676532219158); + DK(KP363970234, +0.363970234266202361351047882776834043890471784); + DK(KP852868531, +0.852868531952443209628250963940074071936020296); + DK(KP492403876, +0.492403876506104029683371512294761506835321626); + DK(KP984807753, +0.984807753012208059366743024589523013670643252); + DK(KP777861913, +0.777861913430206160028177977318626690410586096); + DK(KP839099631, +0.839099631177280011763127298123181364687434283); + DK(KP176326980, +0.176326980708464973471090386868618986121633062); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT i; + for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(36, is), MAKE_VOLATILE_STRIDE(36, os)) { + E T5, TL, Tm, Tl, T1f, TM, Ta, T1c, TF, TW, TI, TX, Tf, T1d, Ts; + E TZ, Tx, T10; + { + E T1, T2, T3, T4; + T1 = ri[0]; + T2 = ri[WS(is, 3)]; + T3 = ri[WS(is, 6)]; + T4 = T2 + T3; + T5 = T1 + T4; + TL = FNMS(KP500000000, T4, T1); + Tm = T3 - T2; + } + { + E Th, Ti, Tj, Tk; + Th = ii[0]; + Ti = ii[WS(is, 3)]; + Tj = ii[WS(is, 6)]; + Tk = Ti + Tj; + Tl = FNMS(KP500000000, Tk, Th); + T1f = Th + Tk; + TM = Ti - Tj; + } + { + E T6, Tz, T9, TE, TC, TH, TD, TG; + T6 = ri[WS(is, 1)]; + Tz = ii[WS(is, 1)]; + { + E T7, T8, TA, TB; + T7 = ri[WS(is, 4)]; + T8 = ri[WS(is, 7)]; + T9 = T7 + T8; + TE = T7 - T8; + TA = ii[WS(is, 4)]; + TB = ii[WS(is, 7)]; + TC = TA + TB; + TH = TB - TA; + } + Ta = T6 + T9; + T1c = Tz + TC; + TD = FNMS(KP500000000, TC, Tz); + TF = FNMS(KP866025403, TE, TD); + TW = FMA(KP866025403, TE, TD); + TG = FNMS(KP500000000, T9, T6); + TI = FNMS(KP866025403, TH, TG); + TX = FMA(KP866025403, TH, TG); + } + { + E Tb, Tt, Te, Tw, Tr, Tu, To, Tv; + Tb = ri[WS(is, 2)]; + Tt = ii[WS(is, 2)]; + { + E Tc, Td, Tp, Tq; + Tc = ri[WS(is, 5)]; + Td = ri[WS(is, 8)]; + Te = Tc + Td; + Tw = Td - Tc; + Tp = ii[WS(is, 5)]; + Tq = ii[WS(is, 8)]; + Tr = Tp - Tq; + Tu = Tp + Tq; + } + Tf = Tb + Te; + T1d = Tt + Tu; + To = FNMS(KP500000000, Te, Tb); + Ts = FMA(KP866025403, Tr, To); + TZ = FNMS(KP866025403, Tr, To); + Tv = FNMS(KP500000000, Tu, Tt); + Tx = FMA(KP866025403, Tw, Tv); + T10 = FNMS(KP866025403, Tw, Tv); + } + { + E T1e, Tg, T1b, T1i, T1g, T1h; + T1e = T1c - T1d; + Tg = Ta + Tf; + T1b = FNMS(KP500000000, Tg, T5); + ro[0] = T5 + Tg; + ro[WS(os, 3)] = FMA(KP866025403, T1e, T1b); + ro[WS(os, 6)] = FNMS(KP866025403, T1e, T1b); + T1i = Tf - Ta; + T1g = T1c + T1d; + T1h = FNMS(KP500000000, T1g, T1f); + io[WS(os, 3)] = FMA(KP866025403, T1i, T1h); + io[0] = T1f + T1g; + io[WS(os, 6)] = FNMS(KP866025403, T1i, T1h); + } + { + E Tn, TN, TK, TS, TQ, TU, TR, TT; + Tn = FMA(KP866025403, Tm, Tl); + TN = FMA(KP866025403, TM, TL); + { + E Ty, TJ, TO, TP; + Ty = FNMS(KP176326980, Tx, Ts); + TJ = FNMS(KP839099631, TI, TF); + TK = FNMS(KP777861913, TJ, Ty); + TS = FMA(KP777861913, TJ, Ty); + TO = FMA(KP176326980, Ts, Tx); + TP = FMA(KP839099631, TF, TI); + TQ = FMA(KP777861913, TP, TO); + TU = FNMS(KP777861913, TP, TO); + } + io[WS(os, 1)] = FNMS(KP984807753, TK, Tn); + ro[WS(os, 1)] = FMA(KP984807753, TQ, TN); + TR = FNMS(KP492403876, TQ, TN); + ro[WS(os, 4)] = FMA(KP852868531, TS, TR); + ro[WS(os, 7)] = FNMS(KP852868531, TS, TR); + TT = FMA(KP492403876, TK, Tn); + io[WS(os, 7)] = FNMS(KP852868531, TU, TT); + io[WS(os, 4)] = FMA(KP852868531, TU, TT); + } + { + E TV, T17, T12, T1a, T16, T18, T13, T19; + TV = FNMS(KP866025403, TM, TL); + T17 = FNMS(KP866025403, Tm, Tl); + { + E TY, T11, T14, T15; + TY = FMA(KP176326980, TX, TW); + T11 = FNMS(KP363970234, T10, TZ); + T12 = FNMS(KP954188894, T11, TY); + T1a = FMA(KP954188894, T11, TY); + T14 = FNMS(KP176326980, TW, TX); + T15 = FMA(KP363970234, TZ, T10); + T16 = FNMS(KP954188894, T15, T14); + T18 = FMA(KP954188894, T15, T14); + } + ro[WS(os, 2)] = FMA(KP984807753, T12, TV); + io[WS(os, 2)] = FNMS(KP984807753, T18, T17); + T13 = FNMS(KP492403876, T12, TV); + ro[WS(os, 5)] = FNMS(KP852868531, T16, T13); + ro[WS(os, 8)] = FMA(KP852868531, T16, T13); + T19 = FMA(KP492403876, T18, T17); + io[WS(os, 5)] = FNMS(KP852868531, T1a, T19); + io[WS(os, 8)] = FMA(KP852868531, T1a, T19); + } + } + } +} + +static const kdft_desc desc = { 9, "n1_9", {24, 0, 56, 0}, &GENUS, 0, 0, 0, 0 }; + +void X(codelet_n1_9) (planner *p) { + X(kdft_register) (p, n1_9, &desc); +} + +#else + +/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 9 -name n1_9 -include dft/scalar/n.h */ + +/* + * This function contains 80 FP additions, 40 FP multiplications, + * (or, 60 additions, 20 multiplications, 20 fused multiply/add), + * 39 stack variables, 8 constants, and 36 memory accesses + */ +#include "dft/scalar/n.h" + +static void n1_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) +{ + DK(KP939692620, +0.939692620785908384054109277324731469936208134); + DK(KP342020143, +0.342020143325668733044099614682259580763083368); + DK(KP984807753, +0.984807753012208059366743024589523013670643252); + DK(KP173648177, +0.173648177666930348851716626769314796000375677); + DK(KP642787609, +0.642787609686539326322643409907263432907559884); + DK(KP766044443, +0.766044443118978035202392650555416673935832457); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT i; + for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(36, is), MAKE_VOLATILE_STRIDE(36, os)) { + E T5, TO, Th, Tk, T1g, TR, Ta, T1c, Tq, TW, Tv, TX, Tf, T1d, TB; + E T10, TG, TZ; + { + E T1, T2, T3, T4; + T1 = ri[0]; + T2 = ri[WS(is, 3)]; + T3 = ri[WS(is, 6)]; + T4 = T2 + T3; + T5 = T1 + T4; + TO = KP866025403 * (T3 - T2); + Th = FNMS(KP500000000, T4, T1); + } + { + E TP, Ti, Tj, TQ; + TP = ii[0]; + Ti = ii[WS(is, 3)]; + Tj = ii[WS(is, 6)]; + TQ = Ti + Tj; + Tk = KP866025403 * (Ti - Tj); + T1g = TP + TQ; + TR = FNMS(KP500000000, TQ, TP); + } + { + E T6, Ts, T9, Tr, Tp, Tt, Tm, Tu; + T6 = ri[WS(is, 1)]; + Ts = ii[WS(is, 1)]; + { + E T7, T8, Tn, To; + T7 = ri[WS(is, 4)]; + T8 = ri[WS(is, 7)]; + T9 = T7 + T8; + Tr = KP866025403 * (T8 - T7); + Tn = ii[WS(is, 4)]; + To = ii[WS(is, 7)]; + Tp = KP866025403 * (Tn - To); + Tt = Tn + To; + } + Ta = T6 + T9; + T1c = Ts + Tt; + Tm = FNMS(KP500000000, T9, T6); + Tq = Tm + Tp; + TW = Tm - Tp; + Tu = FNMS(KP500000000, Tt, Ts); + Tv = Tr + Tu; + TX = Tu - Tr; + } + { + E Tb, TD, Te, TC, TA, TE, Tx, TF; + Tb = ri[WS(is, 2)]; + TD = ii[WS(is, 2)]; + { + E Tc, Td, Ty, Tz; + Tc = ri[WS(is, 5)]; + Td = ri[WS(is, 8)]; + Te = Tc + Td; + TC = KP866025403 * (Td - Tc); + Ty = ii[WS(is, 5)]; + Tz = ii[WS(is, 8)]; + TA = KP866025403 * (Ty - Tz); + TE = Ty + Tz; + } + Tf = Tb + Te; + T1d = TD + TE; + Tx = FNMS(KP500000000, Te, Tb); + TB = Tx + TA; + T10 = Tx - TA; + TF = FNMS(KP500000000, TE, TD); + TG = TC + TF; + TZ = TF - TC; + } + { + E T1e, Tg, T1b, T1f, T1h, T1i; + T1e = KP866025403 * (T1c - T1d); + Tg = Ta + Tf; + T1b = FNMS(KP500000000, Tg, T5); + ro[0] = T5 + Tg; + ro[WS(os, 3)] = T1b + T1e; + ro[WS(os, 6)] = T1b - T1e; + T1f = KP866025403 * (Tf - Ta); + T1h = T1c + T1d; + T1i = FNMS(KP500000000, T1h, T1g); + io[WS(os, 3)] = T1f + T1i; + io[0] = T1g + T1h; + io[WS(os, 6)] = T1i - T1f; + } + { + E Tl, TS, TI, TN, TM, TT, TJ, TU; + Tl = Th + Tk; + TS = TO + TR; + { + E Tw, TH, TK, TL; + Tw = FMA(KP766044443, Tq, KP642787609 * Tv); + TH = FMA(KP173648177, TB, KP984807753 * TG); + TI = Tw + TH; + TN = KP866025403 * (TH - Tw); + TK = FNMS(KP642787609, Tq, KP766044443 * Tv); + TL = FNMS(KP984807753, TB, KP173648177 * TG); + TM = KP866025403 * (TK - TL); + TT = TK + TL; + } + ro[WS(os, 1)] = Tl + TI; + io[WS(os, 1)] = TS + TT; + TJ = FNMS(KP500000000, TI, Tl); + ro[WS(os, 7)] = TJ - TM; + ro[WS(os, 4)] = TJ + TM; + TU = FNMS(KP500000000, TT, TS); + io[WS(os, 4)] = TN + TU; + io[WS(os, 7)] = TU - TN; + } + { + E TV, T14, T12, T13, T17, T1a, T18, T19; + TV = Th - Tk; + T14 = TR - TO; + { + E TY, T11, T15, T16; + TY = FMA(KP173648177, TW, KP984807753 * TX); + T11 = FNMS(KP939692620, T10, KP342020143 * TZ); + T12 = TY + T11; + T13 = KP866025403 * (T11 - TY); + T15 = FNMS(KP984807753, TW, KP173648177 * TX); + T16 = FMA(KP342020143, T10, KP939692620 * TZ); + T17 = T15 - T16; + T1a = KP866025403 * (T15 + T16); + } + ro[WS(os, 2)] = TV + T12; + io[WS(os, 2)] = T14 + T17; + T18 = FNMS(KP500000000, T17, T14); + io[WS(os, 5)] = T13 + T18; + io[WS(os, 8)] = T18 - T13; + T19 = FNMS(KP500000000, T12, TV); + ro[WS(os, 8)] = T19 - T1a; + ro[WS(os, 5)] = T19 + T1a; + } + } + } +} + +static const kdft_desc desc = { 9, "n1_9", {60, 20, 20, 0}, &GENUS, 0, 0, 0, 0 }; + +void X(codelet_n1_9) (planner *p) { + X(kdft_register) (p, n1_9, &desc); +} + +#endif