diff src/fftw-3.3.8/dft/scalar/codelets/n1_7.c @ 82:d0c2a83c1364

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.8/dft/scalar/codelets/n1_7.c	Tue Nov 19 14:52:55 2019 +0000
@@ -0,0 +1,251 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Thu May 24 08:04:10 EDT 2018 */
+
+#include "dft/codelet-dft.h"
+
+#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
+
+/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include dft/scalar/n.h */
+
+/*
+ * This function contains 60 FP additions, 42 FP multiplications,
+ * (or, 18 additions, 0 multiplications, 42 fused multiply/add),
+ * 41 stack variables, 6 constants, and 28 memory accesses
+ */
+#include "dft/scalar/n.h"
+
+static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
+{
+     DK(KP974927912, +0.974927912181823607018131682993931217232785801);
+     DK(KP900968867, +0.900968867902419126236102319507445051165919162);
+     DK(KP692021471, +0.692021471630095869627814897002069140197260599);
+     DK(KP801937735, +0.801937735804838252472204639014890102331838324);
+     DK(KP554958132, +0.554958132087371191422194871006410481067288862);
+     DK(KP356895867, +0.356895867892209443894399510021300583399127187);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
+	       E T1, Tz, T4, TI, Ta, TG, T7, TH, Tb, Tp, TT, TO, TJ, Tu, Tg;
+	       E TB, Tm, TC, Tj, TA, Tn, Ts, TQ, TL, TD, Tx;
+	       T1 = ri[0];
+	       Tz = ii[0];
+	       {
+		    E T2, T3, Te, Tf;
+		    T2 = ri[WS(is, 1)];
+		    T3 = ri[WS(is, 6)];
+		    T4 = T2 + T3;
+		    TI = T3 - T2;
+		    {
+			 E T8, T9, T5, T6;
+			 T8 = ri[WS(is, 3)];
+			 T9 = ri[WS(is, 4)];
+			 Ta = T8 + T9;
+			 TG = T9 - T8;
+			 T5 = ri[WS(is, 2)];
+			 T6 = ri[WS(is, 5)];
+			 T7 = T5 + T6;
+			 TH = T6 - T5;
+		    }
+		    Tb = FNMS(KP356895867, T7, T4);
+		    Tp = FNMS(KP356895867, T4, Ta);
+		    TT = FMA(KP554958132, TG, TI);
+		    TO = FMA(KP554958132, TH, TG);
+		    TJ = FNMS(KP554958132, TI, TH);
+		    Tu = FNMS(KP356895867, Ta, T7);
+		    Te = ii[WS(is, 2)];
+		    Tf = ii[WS(is, 5)];
+		    Tg = Te - Tf;
+		    TB = Te + Tf;
+		    {
+			 E Tk, Tl, Th, Ti;
+			 Tk = ii[WS(is, 3)];
+			 Tl = ii[WS(is, 4)];
+			 Tm = Tk - Tl;
+			 TC = Tk + Tl;
+			 Th = ii[WS(is, 1)];
+			 Ti = ii[WS(is, 6)];
+			 Tj = Th - Ti;
+			 TA = Th + Ti;
+		    }
+		    Tn = FMA(KP554958132, Tm, Tj);
+		    Ts = FMA(KP554958132, Tg, Tm);
+		    TQ = FNMS(KP356895867, TB, TA);
+		    TL = FNMS(KP356895867, TA, TC);
+		    TD = FNMS(KP356895867, TC, TB);
+		    Tx = FNMS(KP554958132, Tj, Tg);
+	       }
+	       ro[0] = T1 + T4 + T7 + Ta;
+	       io[0] = Tz + TA + TB + TC;
+	       {
+		    E To, Td, Tc, TU, TS, TR;
+		    To = FMA(KP801937735, Tn, Tg);
+		    Tc = FNMS(KP692021471, Tb, Ta);
+		    Td = FNMS(KP900968867, Tc, T1);
+		    ro[WS(os, 6)] = FNMS(KP974927912, To, Td);
+		    ro[WS(os, 1)] = FMA(KP974927912, To, Td);
+		    TU = FMA(KP801937735, TT, TH);
+		    TR = FNMS(KP692021471, TQ, TC);
+		    TS = FNMS(KP900968867, TR, Tz);
+		    io[WS(os, 1)] = FMA(KP974927912, TU, TS);
+		    io[WS(os, 6)] = FNMS(KP974927912, TU, TS);
+	       }
+	       {
+		    E Tt, Tr, Tq, TP, TN, TM;
+		    Tt = FNMS(KP801937735, Ts, Tj);
+		    Tq = FNMS(KP692021471, Tp, T7);
+		    Tr = FNMS(KP900968867, Tq, T1);
+		    ro[WS(os, 5)] = FNMS(KP974927912, Tt, Tr);
+		    ro[WS(os, 2)] = FMA(KP974927912, Tt, Tr);
+		    TP = FNMS(KP801937735, TO, TI);
+		    TM = FNMS(KP692021471, TL, TB);
+		    TN = FNMS(KP900968867, TM, Tz);
+		    io[WS(os, 2)] = FMA(KP974927912, TP, TN);
+		    io[WS(os, 5)] = FNMS(KP974927912, TP, TN);
+	       }
+	       {
+		    E Ty, Tw, Tv, TK, TF, TE;
+		    Ty = FNMS(KP801937735, Tx, Tm);
+		    Tv = FNMS(KP692021471, Tu, T4);
+		    Tw = FNMS(KP900968867, Tv, T1);
+		    ro[WS(os, 4)] = FNMS(KP974927912, Ty, Tw);
+		    ro[WS(os, 3)] = FMA(KP974927912, Ty, Tw);
+		    TK = FNMS(KP801937735, TJ, TG);
+		    TE = FNMS(KP692021471, TD, TA);
+		    TF = FNMS(KP900968867, TE, Tz);
+		    io[WS(os, 3)] = FMA(KP974927912, TK, TF);
+		    io[WS(os, 4)] = FNMS(KP974927912, TK, TF);
+	       }
+	  }
+     }
+}
+
+static const kdft_desc desc = { 7, "n1_7", {18, 0, 42, 0}, &GENUS, 0, 0, 0, 0 };
+
+void X(codelet_n1_7) (planner *p) {
+     X(kdft_register) (p, n1_7, &desc);
+}
+
+#else
+
+/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 7 -name n1_7 -include dft/scalar/n.h */
+
+/*
+ * This function contains 60 FP additions, 36 FP multiplications,
+ * (or, 36 additions, 12 multiplications, 24 fused multiply/add),
+ * 25 stack variables, 6 constants, and 28 memory accesses
+ */
+#include "dft/scalar/n.h"
+
+static void n1_7(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
+{
+     DK(KP222520933, +0.222520933956314404288902564496794759466355569);
+     DK(KP900968867, +0.900968867902419126236102319507445051165919162);
+     DK(KP623489801, +0.623489801858733530525004884004239810632274731);
+     DK(KP433883739, +0.433883739117558120475768332848358754609990728);
+     DK(KP781831482, +0.781831482468029808708444526674057750232334519);
+     DK(KP974927912, +0.974927912181823607018131682993931217232785801);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(28, is), MAKE_VOLATILE_STRIDE(28, os)) {
+	       E T1, Tu, T4, Tq, Te, Tx, T7, Ts, Tk, Tv, Ta, Tr, Th, Tw;
+	       T1 = ri[0];
+	       Tu = ii[0];
+	       {
+		    E T2, T3, Tc, Td;
+		    T2 = ri[WS(is, 1)];
+		    T3 = ri[WS(is, 6)];
+		    T4 = T2 + T3;
+		    Tq = T3 - T2;
+		    Tc = ii[WS(is, 1)];
+		    Td = ii[WS(is, 6)];
+		    Te = Tc - Td;
+		    Tx = Tc + Td;
+	       }
+	       {
+		    E T5, T6, Ti, Tj;
+		    T5 = ri[WS(is, 2)];
+		    T6 = ri[WS(is, 5)];
+		    T7 = T5 + T6;
+		    Ts = T6 - T5;
+		    Ti = ii[WS(is, 2)];
+		    Tj = ii[WS(is, 5)];
+		    Tk = Ti - Tj;
+		    Tv = Ti + Tj;
+	       }
+	       {
+		    E T8, T9, Tf, Tg;
+		    T8 = ri[WS(is, 3)];
+		    T9 = ri[WS(is, 4)];
+		    Ta = T8 + T9;
+		    Tr = T9 - T8;
+		    Tf = ii[WS(is, 3)];
+		    Tg = ii[WS(is, 4)];
+		    Th = Tf - Tg;
+		    Tw = Tf + Tg;
+	       }
+	       ro[0] = T1 + T4 + T7 + Ta;
+	       io[0] = Tu + Tx + Tv + Tw;
+	       {
+		    E Tl, Tb, TB, TC;
+		    Tl = FNMS(KP781831482, Th, KP974927912 * Te) - (KP433883739 * Tk);
+		    Tb = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4);
+		    ro[WS(os, 5)] = Tb - Tl;
+		    ro[WS(os, 2)] = Tb + Tl;
+		    TB = FNMS(KP781831482, Tr, KP974927912 * Tq) - (KP433883739 * Ts);
+		    TC = FMA(KP623489801, Tw, Tu) + FNMA(KP900968867, Tv, KP222520933 * Tx);
+		    io[WS(os, 2)] = TB + TC;
+		    io[WS(os, 5)] = TC - TB;
+	       }
+	       {
+		    E Tn, Tm, Tz, TA;
+		    Tn = FMA(KP781831482, Te, KP974927912 * Tk) + (KP433883739 * Th);
+		    Tm = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7);
+		    ro[WS(os, 6)] = Tm - Tn;
+		    ro[WS(os, 1)] = Tm + Tn;
+		    Tz = FMA(KP781831482, Tq, KP974927912 * Ts) + (KP433883739 * Tr);
+		    TA = FMA(KP623489801, Tx, Tu) + FNMA(KP900968867, Tw, KP222520933 * Tv);
+		    io[WS(os, 1)] = Tz + TA;
+		    io[WS(os, 6)] = TA - Tz;
+	       }
+	       {
+		    E Tp, To, Tt, Ty;
+		    Tp = FMA(KP433883739, Te, KP974927912 * Th) - (KP781831482 * Tk);
+		    To = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4);
+		    ro[WS(os, 4)] = To - Tp;
+		    ro[WS(os, 3)] = To + Tp;
+		    Tt = FMA(KP433883739, Tq, KP974927912 * Tr) - (KP781831482 * Ts);
+		    Ty = FMA(KP623489801, Tv, Tu) + FNMA(KP222520933, Tw, KP900968867 * Tx);
+		    io[WS(os, 3)] = Tt + Ty;
+		    io[WS(os, 4)] = Ty - Tt;
+	       }
+	  }
+     }
+}
+
+static const kdft_desc desc = { 7, "n1_7", {36, 12, 24, 0}, &GENUS, 0, 0, 0, 0 };
+
+void X(codelet_n1_7) (planner *p) {
+     X(kdft_register) (p, n1_7, &desc);
+}
+
+#endif