Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/dft/direct.c @ 82:d0c2a83c1364
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/dft/direct.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,293 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + + +/* direct DFT solver, if we have a codelet */ + +#include "dft/dft.h" + +typedef struct { + solver super; + const kdft_desc *desc; + kdft k; + int bufferedp; +} S; + +typedef struct { + plan_dft super; + + stride is, os, bufstride; + INT n, vl, ivs, ovs; + kdft k; + const S *slv; +} P; + +static void dobatch(const P *ego, R *ri, R *ii, R *ro, R *io, + R *buf, INT batchsz) +{ + X(cpy2d_pair_ci)(ri, ii, buf, buf+1, + ego->n, WS(ego->is, 1), WS(ego->bufstride, 1), + batchsz, ego->ivs, 2); + + if (IABS(WS(ego->os, 1)) < IABS(ego->ovs)) { + /* transform directly to output */ + ego->k(buf, buf+1, ro, io, + ego->bufstride, ego->os, batchsz, 2, ego->ovs); + } else { + /* transform to buffer and copy back */ + ego->k(buf, buf+1, buf, buf+1, + ego->bufstride, ego->bufstride, batchsz, 2, 2); + X(cpy2d_pair_co)(buf, buf+1, ro, io, + ego->n, WS(ego->bufstride, 1), WS(ego->os, 1), + batchsz, 2, ego->ovs); + } +} + +static INT compute_batchsize(INT n) +{ + /* round up to multiple of 4 */ + n += 3; + n &= -4; + + return (n + 2); +} + +static void apply_buf(const plan *ego_, R *ri, R *ii, R *ro, R *io) +{ + const P *ego = (const P *) ego_; + R *buf; + INT vl = ego->vl, n = ego->n, batchsz = compute_batchsize(n); + INT i; + size_t bufsz = n * batchsz * 2 * sizeof(R); + + BUF_ALLOC(R *, buf, bufsz); + + for (i = 0; i < vl - batchsz; i += batchsz) { + dobatch(ego, ri, ii, ro, io, buf, batchsz); + ri += batchsz * ego->ivs; ii += batchsz * ego->ivs; + ro += batchsz * ego->ovs; io += batchsz * ego->ovs; + } + dobatch(ego, ri, ii, ro, io, buf, vl - i); + + BUF_FREE(buf, bufsz); +} + +static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) +{ + const P *ego = (const P *) ego_; + ASSERT_ALIGNED_DOUBLE; + ego->k(ri, ii, ro, io, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs); +} + +static void apply_extra_iter(const plan *ego_, R *ri, R *ii, R *ro, R *io) +{ + const P *ego = (const P *) ego_; + INT vl = ego->vl; + + ASSERT_ALIGNED_DOUBLE; + + /* for 4-way SIMD when VL is odd: iterate over an + even vector length VL, and then execute the last + iteration as a 2-vector with vector stride 0. */ + ego->k(ri, ii, ro, io, ego->is, ego->os, vl - 1, ego->ivs, ego->ovs); + + ego->k(ri + (vl - 1) * ego->ivs, ii + (vl - 1) * ego->ivs, + ro + (vl - 1) * ego->ovs, io + (vl - 1) * ego->ovs, + ego->is, ego->os, 1, 0, 0); +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(stride_destroy)(ego->is); + X(stride_destroy)(ego->os); + X(stride_destroy)(ego->bufstride); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + const S *s = ego->slv; + const kdft_desc *d = s->desc; + + if (ego->slv->bufferedp) + p->print(p, "(dft-directbuf/%D-%D%v \"%s\")", + compute_batchsize(d->sz), d->sz, ego->vl, d->nam); + else + p->print(p, "(dft-direct-%D%v \"%s\")", d->sz, ego->vl, d->nam); +} + +static int applicable_buf(const solver *ego_, const problem *p_, + const planner *plnr) +{ + const S *ego = (const S *) ego_; + const problem_dft *p = (const problem_dft *) p_; + const kdft_desc *d = ego->desc; + INT vl; + INT ivs, ovs; + INT batchsz; + + return ( + 1 + && p->sz->rnk == 1 + && p->vecsz->rnk == 1 + && p->sz->dims[0].n == d->sz + + /* check strides etc */ + && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) + + /* UGLY if IS <= IVS */ + && !(NO_UGLYP(plnr) && + X(iabs)(p->sz->dims[0].is) <= X(iabs)(ivs)) + + && (batchsz = compute_batchsize(d->sz), 1) + && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io, + 2 * batchsz, p->sz->dims[0].os, + batchsz, 2, ovs, plnr)) + && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io, + 2 * batchsz, p->sz->dims[0].os, + vl % batchsz, 2, ovs, plnr)) + + + && (0 + /* can operate out-of-place */ + || p->ri != p->ro + + /* can operate in-place as long as strides are the same */ + || X(tensor_inplace_strides2)(p->sz, p->vecsz) + + /* can do it if the problem fits in the buffer, no matter + what the strides are */ + || vl <= batchsz + ) + ); +} + +static int applicable(const solver *ego_, const problem *p_, + const planner *plnr, int *extra_iterp) +{ + const S *ego = (const S *) ego_; + const problem_dft *p = (const problem_dft *) p_; + const kdft_desc *d = ego->desc; + INT vl; + INT ivs, ovs; + + return ( + 1 + && p->sz->rnk == 1 + && p->vecsz->rnk <= 1 + && p->sz->dims[0].n == d->sz + + /* check strides etc */ + && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) + + && ((*extra_iterp = 0, + (d->genus->okp(d, p->ri, p->ii, p->ro, p->io, + p->sz->dims[0].is, p->sz->dims[0].os, + vl, ivs, ovs, plnr))) + || + (*extra_iterp = 1, + ((d->genus->okp(d, p->ri, p->ii, p->ro, p->io, + p->sz->dims[0].is, p->sz->dims[0].os, + vl - 1, ivs, ovs, plnr)) + && + (d->genus->okp(d, p->ri, p->ii, p->ro, p->io, + p->sz->dims[0].is, p->sz->dims[0].os, + 2, 0, 0, plnr))))) + + && (0 + /* can operate out-of-place */ + || p->ri != p->ro + + /* can always compute one transform */ + || vl == 1 + + /* can operate in-place as long as strides are the same */ + || X(tensor_inplace_strides2)(p->sz, p->vecsz) + ) + ); +} + + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + const S *ego = (const S *) ego_; + P *pln; + const problem_dft *p; + iodim *d; + const kdft_desc *e = ego->desc; + + static const plan_adt padt = { + X(dft_solve), X(null_awake), print, destroy + }; + + UNUSED(plnr); + + if (ego->bufferedp) { + if (!applicable_buf(ego_, p_, plnr)) + return (plan *)0; + pln = MKPLAN_DFT(P, &padt, apply_buf); + } else { + int extra_iterp = 0; + if (!applicable(ego_, p_, plnr, &extra_iterp)) + return (plan *)0; + pln = MKPLAN_DFT(P, &padt, extra_iterp ? apply_extra_iter : apply); + } + + p = (const problem_dft *) p_; + d = p->sz->dims; + pln->k = ego->k; + pln->n = d[0].n; + pln->is = X(mkstride)(pln->n, d[0].is); + pln->os = X(mkstride)(pln->n, d[0].os); + pln->bufstride = X(mkstride)(pln->n, 2 * compute_batchsize(pln->n)); + + X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); + pln->slv = ego; + + X(ops_zero)(&pln->super.super.ops); + X(ops_madd2)(pln->vl / e->genus->vl, &e->ops, &pln->super.super.ops); + + if (ego->bufferedp) + pln->super.super.ops.other += 4 * pln->n * pln->vl; + + pln->super.super.could_prune_now_p = !ego->bufferedp; + return &(pln->super.super); +} + +static solver *mksolver(kdft k, const kdft_desc *desc, int bufferedp) +{ + static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + slv->k = k; + slv->desc = desc; + slv->bufferedp = bufferedp; + return &(slv->super); +} + +solver *X(mksolver_dft_direct)(kdft k, const kdft_desc *desc) +{ + return mksolver(k, desc, 0); +} + +solver *X(mksolver_dft_directbuf)(kdft k, const kdft_desc *desc) +{ + return mksolver(k, desc, 1); +}