Mercurial > hg > sv-dependency-builds
diff any/include/boost/math/distributions/poisson.hpp @ 160:cff480c41f97
Add some cross-platform Boost headers
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Sat, 16 Feb 2019 16:31:25 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/any/include/boost/math/distributions/poisson.hpp Sat Feb 16 16:31:25 2019 +0000 @@ -0,0 +1,527 @@ +// boost\math\distributions\poisson.hpp + +// Copyright John Maddock 2006. +// Copyright Paul A. Bristow 2007. + +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. +// (See accompanying file LICENSE_1_0.txt +// or copy at http://www.boost.org/LICENSE_1_0.txt) + +// Poisson distribution is a discrete probability distribution. +// It expresses the probability of a number (k) of +// events, occurrences, failures or arrivals occurring in a fixed time, +// assuming these events occur with a known average or mean rate (lambda) +// and are independent of the time since the last event. +// The distribution was discovered by Simeon-Denis Poisson (1781-1840). + +// Parameter lambda is the mean number of events in the given time interval. +// The random variate k is the number of events, occurrences or arrivals. +// k argument may be integral, signed, or unsigned, or floating point. +// If necessary, it has already been promoted from an integral type. + +// Note that the Poisson distribution +// (like others including the binomial, negative binomial & Bernoulli) +// is strictly defined as a discrete function: +// only integral values of k are envisaged. +// However because the method of calculation uses a continuous gamma function, +// it is convenient to treat it as if a continous function, +// and permit non-integral values of k. +// To enforce the strict mathematical model, users should use floor or ceil functions +// on k outside this function to ensure that k is integral. + +// See http://en.wikipedia.org/wiki/Poisson_distribution +// http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html + +#ifndef BOOST_MATH_SPECIAL_POISSON_HPP +#define BOOST_MATH_SPECIAL_POISSON_HPP + +#include <boost/math/distributions/fwd.hpp> +#include <boost/math/special_functions/gamma.hpp> // for incomplete gamma. gamma_q +#include <boost/math/special_functions/trunc.hpp> // for incomplete gamma. gamma_q +#include <boost/math/distributions/complement.hpp> // complements +#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks +#include <boost/math/special_functions/fpclassify.hpp> // isnan. +#include <boost/math/special_functions/factorials.hpp> // factorials. +#include <boost/math/tools/roots.hpp> // for root finding. +#include <boost/math/distributions/detail/inv_discrete_quantile.hpp> + +#include <utility> + +namespace boost +{ + namespace math + { + namespace poisson_detail + { + // Common error checking routines for Poisson distribution functions. + // These are convoluted, & apparently redundant, to try to ensure that + // checks are always performed, even if exceptions are not enabled. + + template <class RealType, class Policy> + inline bool check_mean(const char* function, const RealType& mean, RealType* result, const Policy& pol) + { + if(!(boost::math::isfinite)(mean) || (mean < 0)) + { + *result = policies::raise_domain_error<RealType>( + function, + "Mean argument is %1%, but must be >= 0 !", mean, pol); + return false; + } + return true; + } // bool check_mean + + template <class RealType, class Policy> + inline bool check_mean_NZ(const char* function, const RealType& mean, RealType* result, const Policy& pol) + { // mean == 0 is considered an error. + if( !(boost::math::isfinite)(mean) || (mean <= 0)) + { + *result = policies::raise_domain_error<RealType>( + function, + "Mean argument is %1%, but must be > 0 !", mean, pol); + return false; + } + return true; + } // bool check_mean_NZ + + template <class RealType, class Policy> + inline bool check_dist(const char* function, const RealType& mean, RealType* result, const Policy& pol) + { // Only one check, so this is redundant really but should be optimized away. + return check_mean_NZ(function, mean, result, pol); + } // bool check_dist + + template <class RealType, class Policy> + inline bool check_k(const char* function, const RealType& k, RealType* result, const Policy& pol) + { + if((k < 0) || !(boost::math::isfinite)(k)) + { + *result = policies::raise_domain_error<RealType>( + function, + "Number of events k argument is %1%, but must be >= 0 !", k, pol); + return false; + } + return true; + } // bool check_k + + template <class RealType, class Policy> + inline bool check_dist_and_k(const char* function, RealType mean, RealType k, RealType* result, const Policy& pol) + { + if((check_dist(function, mean, result, pol) == false) || + (check_k(function, k, result, pol) == false)) + { + return false; + } + return true; + } // bool check_dist_and_k + + template <class RealType, class Policy> + inline bool check_prob(const char* function, const RealType& p, RealType* result, const Policy& pol) + { // Check 0 <= p <= 1 + if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1)) + { + *result = policies::raise_domain_error<RealType>( + function, + "Probability argument is %1%, but must be >= 0 and <= 1 !", p, pol); + return false; + } + return true; + } // bool check_prob + + template <class RealType, class Policy> + inline bool check_dist_and_prob(const char* function, RealType mean, RealType p, RealType* result, const Policy& pol) + { + if((check_dist(function, mean, result, pol) == false) || + (check_prob(function, p, result, pol) == false)) + { + return false; + } + return true; + } // bool check_dist_and_prob + + } // namespace poisson_detail + + template <class RealType = double, class Policy = policies::policy<> > + class poisson_distribution + { + public: + typedef RealType value_type; + typedef Policy policy_type; + + poisson_distribution(RealType l_mean = 1) : m_l(l_mean) // mean (lambda). + { // Expected mean number of events that occur during the given interval. + RealType r; + poisson_detail::check_dist( + "boost::math::poisson_distribution<%1%>::poisson_distribution", + m_l, + &r, Policy()); + } // poisson_distribution constructor. + + RealType mean() const + { // Private data getter function. + return m_l; + } + private: + // Data member, initialized by constructor. + RealType m_l; // mean number of occurrences. + }; // template <class RealType, class Policy> class poisson_distribution + + typedef poisson_distribution<double> poisson; // Reserved name of type double. + + // Non-member functions to give properties of the distribution. + + template <class RealType, class Policy> + inline const std::pair<RealType, RealType> range(const poisson_distribution<RealType, Policy>& /* dist */) + { // Range of permissible values for random variable k. + using boost::math::tools::max_value; + return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // Max integer? + } + + template <class RealType, class Policy> + inline const std::pair<RealType, RealType> support(const poisson_distribution<RealType, Policy>& /* dist */) + { // Range of supported values for random variable k. + // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. + using boost::math::tools::max_value; + return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); + } + + template <class RealType, class Policy> + inline RealType mean(const poisson_distribution<RealType, Policy>& dist) + { // Mean of poisson distribution = lambda. + return dist.mean(); + } // mean + + template <class RealType, class Policy> + inline RealType mode(const poisson_distribution<RealType, Policy>& dist) + { // mode. + BOOST_MATH_STD_USING // ADL of std functions. + return floor(dist.mean()); + } + + //template <class RealType, class Policy> + //inline RealType median(const poisson_distribution<RealType, Policy>& dist) + //{ // median = approximately lambda + 1/3 - 0.2/lambda + // RealType l = dist.mean(); + // return dist.mean() + static_cast<RealType>(0.3333333333333333333333333333333333333333333333) + // - static_cast<RealType>(0.2) / l; + //} // BUT this formula appears to be out-by-one compared to quantile(half) + // Query posted on Wikipedia. + // Now implemented via quantile(half) in derived accessors. + + template <class RealType, class Policy> + inline RealType variance(const poisson_distribution<RealType, Policy>& dist) + { // variance. + return dist.mean(); + } + + // RealType standard_deviation(const poisson_distribution<RealType, Policy>& dist) + // standard_deviation provided by derived accessors. + + template <class RealType, class Policy> + inline RealType skewness(const poisson_distribution<RealType, Policy>& dist) + { // skewness = sqrt(l). + BOOST_MATH_STD_USING // ADL of std functions. + return 1 / sqrt(dist.mean()); + } + + template <class RealType, class Policy> + inline RealType kurtosis_excess(const poisson_distribution<RealType, Policy>& dist) + { // skewness = sqrt(l). + return 1 / dist.mean(); // kurtosis_excess 1/mean from Wiki & MathWorld eq 31. + // http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess + // is more convenient because the kurtosis excess of a normal distribution is zero + // whereas the true kurtosis is 3. + } // RealType kurtosis_excess + + template <class RealType, class Policy> + inline RealType kurtosis(const poisson_distribution<RealType, Policy>& dist) + { // kurtosis is 4th moment about the mean = u4 / sd ^ 4 + // http://en.wikipedia.org/wiki/Curtosis + // kurtosis can range from -2 (flat top) to +infinity (sharp peak & heavy tails). + // http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm + return 3 + 1 / dist.mean(); // NIST. + // http://mathworld.wolfram.com/Kurtosis.html explains that the kurtosis excess + // is more convenient because the kurtosis excess of a normal distribution is zero + // whereas the true kurtosis is 3. + } // RealType kurtosis + + template <class RealType, class Policy> + RealType pdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k) + { // Probability Density/Mass Function. + // Probability that there are EXACTLY k occurrences (or arrivals). + BOOST_FPU_EXCEPTION_GUARD + + BOOST_MATH_STD_USING // for ADL of std functions. + + RealType mean = dist.mean(); + // Error check: + RealType result = 0; + if(false == poisson_detail::check_dist_and_k( + "boost::math::pdf(const poisson_distribution<%1%>&, %1%)", + mean, + k, + &result, Policy())) + { + return result; + } + + // Special case of mean zero, regardless of the number of events k. + if (mean == 0) + { // Probability for any k is zero. + return 0; + } + if (k == 0) + { // mean ^ k = 1, and k! = 1, so can simplify. + return exp(-mean); + } + return boost::math::gamma_p_derivative(k+1, mean, Policy()); + } // pdf + + template <class RealType, class Policy> + RealType cdf(const poisson_distribution<RealType, Policy>& dist, const RealType& k) + { // Cumulative Distribution Function Poisson. + // The random variate k is the number of occurrences(or arrivals) + // k argument may be integral, signed, or unsigned, or floating point. + // If necessary, it has already been promoted from an integral type. + // Returns the sum of the terms 0 through k of the Poisson Probability Density or Mass (pdf). + + // But note that the Poisson distribution + // (like others including the binomial, negative binomial & Bernoulli) + // is strictly defined as a discrete function: only integral values of k are envisaged. + // However because of the method of calculation using a continuous gamma function, + // it is convenient to treat it as if it is a continous function + // and permit non-integral values of k. + // To enforce the strict mathematical model, users should use floor or ceil functions + // outside this function to ensure that k is integral. + + // The terms are not summed directly (at least for larger k) + // instead the incomplete gamma integral is employed, + + BOOST_MATH_STD_USING // for ADL of std function exp. + + RealType mean = dist.mean(); + // Error checks: + RealType result = 0; + if(false == poisson_detail::check_dist_and_k( + "boost::math::cdf(const poisson_distribution<%1%>&, %1%)", + mean, + k, + &result, Policy())) + { + return result; + } + // Special cases: + if (mean == 0) + { // Probability for any k is zero. + return 0; + } + if (k == 0) + { // return pdf(dist, static_cast<RealType>(0)); + // but mean (and k) have already been checked, + // so this avoids unnecessary repeated checks. + return exp(-mean); + } + // For small integral k could use a finite sum - + // it's cheaper than the gamma function. + // BUT this is now done efficiently by gamma_q function. + // Calculate poisson cdf using the gamma_q function. + return gamma_q(k+1, mean, Policy()); + } // binomial cdf + + template <class RealType, class Policy> + RealType cdf(const complemented2_type<poisson_distribution<RealType, Policy>, RealType>& c) + { // Complemented Cumulative Distribution Function Poisson + // The random variate k is the number of events, occurrences or arrivals. + // k argument may be integral, signed, or unsigned, or floating point. + // If necessary, it has already been promoted from an integral type. + // But note that the Poisson distribution + // (like others including the binomial, negative binomial & Bernoulli) + // is strictly defined as a discrete function: only integral values of k are envisaged. + // However because of the method of calculation using a continuous gamma function, + // it is convenient to treat it as is it is a continous function + // and permit non-integral values of k. + // To enforce the strict mathematical model, users should use floor or ceil functions + // outside this function to ensure that k is integral. + + // Returns the sum of the terms k+1 through inf of the Poisson Probability Density/Mass (pdf). + // The terms are not summed directly (at least for larger k) + // instead the incomplete gamma integral is employed, + + RealType const& k = c.param; + poisson_distribution<RealType, Policy> const& dist = c.dist; + + RealType mean = dist.mean(); + + // Error checks: + RealType result = 0; + if(false == poisson_detail::check_dist_and_k( + "boost::math::cdf(const poisson_distribution<%1%>&, %1%)", + mean, + k, + &result, Policy())) + { + return result; + } + // Special case of mean, regardless of the number of events k. + if (mean == 0) + { // Probability for any k is unity, complement of zero. + return 1; + } + if (k == 0) + { // Avoid repeated checks on k and mean in gamma_p. + return -boost::math::expm1(-mean, Policy()); + } + // Unlike un-complemented cdf (sum from 0 to k), + // can't use finite sum from k+1 to infinity for small integral k, + // anyway it is now done efficiently by gamma_p. + return gamma_p(k + 1, mean, Policy()); // Calculate Poisson cdf using the gamma_p function. + // CCDF = gamma_p(k+1, lambda) + } // poisson ccdf + + template <class RealType, class Policy> + inline RealType quantile(const poisson_distribution<RealType, Policy>& dist, const RealType& p) + { // Quantile (or Percent Point) Poisson function. + // Return the number of expected events k for a given probability p. + static const char* function = "boost::math::quantile(const poisson_distribution<%1%>&, %1%)"; + RealType result = 0; // of Argument checks: + if(false == poisson_detail::check_prob( + function, + p, + &result, Policy())) + { + return result; + } + // Special case: + if (dist.mean() == 0) + { // if mean = 0 then p = 0, so k can be anything? + if (false == poisson_detail::check_mean_NZ( + function, + dist.mean(), + &result, Policy())) + { + return result; + } + } + if(p == 0) + { + return 0; // Exact result regardless of discrete-quantile Policy + } + if(p == 1) + { + return policies::raise_overflow_error<RealType>(function, 0, Policy()); + } + typedef typename Policy::discrete_quantile_type discrete_type; + boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); + RealType guess, factor = 8; + RealType z = dist.mean(); + if(z < 1) + guess = z; + else + guess = boost::math::detail::inverse_poisson_cornish_fisher(z, p, RealType(1-p), Policy()); + if(z > 5) + { + if(z > 1000) + factor = 1.01f; + else if(z > 50) + factor = 1.1f; + else if(guess > 10) + factor = 1.25f; + else + factor = 2; + if(guess < 1.1) + factor = 8; + } + + return detail::inverse_discrete_quantile( + dist, + p, + false, + guess, + factor, + RealType(1), + discrete_type(), + max_iter); + } // quantile + + template <class RealType, class Policy> + inline RealType quantile(const complemented2_type<poisson_distribution<RealType, Policy>, RealType>& c) + { // Quantile (or Percent Point) of Poisson function. + // Return the number of expected events k for a given + // complement of the probability q. + // + // Error checks: + static const char* function = "boost::math::quantile(complement(const poisson_distribution<%1%>&, %1%))"; + RealType q = c.param; + const poisson_distribution<RealType, Policy>& dist = c.dist; + RealType result = 0; // of argument checks. + if(false == poisson_detail::check_prob( + function, + q, + &result, Policy())) + { + return result; + } + // Special case: + if (dist.mean() == 0) + { // if mean = 0 then p = 0, so k can be anything? + if (false == poisson_detail::check_mean_NZ( + function, + dist.mean(), + &result, Policy())) + { + return result; + } + } + if(q == 0) + { + return policies::raise_overflow_error<RealType>(function, 0, Policy()); + } + if(q == 1) + { + return 0; // Exact result regardless of discrete-quantile Policy + } + typedef typename Policy::discrete_quantile_type discrete_type; + boost::uintmax_t max_iter = policies::get_max_root_iterations<Policy>(); + RealType guess, factor = 8; + RealType z = dist.mean(); + if(z < 1) + guess = z; + else + guess = boost::math::detail::inverse_poisson_cornish_fisher(z, RealType(1-q), q, Policy()); + if(z > 5) + { + if(z > 1000) + factor = 1.01f; + else if(z > 50) + factor = 1.1f; + else if(guess > 10) + factor = 1.25f; + else + factor = 2; + if(guess < 1.1) + factor = 8; + } + + return detail::inverse_discrete_quantile( + dist, + q, + true, + guess, + factor, + RealType(1), + discrete_type(), + max_iter); + } // quantile complement. + + } // namespace math +} // namespace boost + +// This include must be at the end, *after* the accessors +// for this distribution have been defined, in order to +// keep compilers that support two-phase lookup happy. +#include <boost/math/distributions/detail/derived_accessors.hpp> +#include <boost/math/distributions/detail/inv_discrete_quantile.hpp> + +#endif // BOOST_MATH_SPECIAL_POISSON_HPP + + +