Mercurial > hg > sv-dependency-builds
diff any/include/boost/math/distributions/geometric.hpp @ 160:cff480c41f97
Add some cross-platform Boost headers
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Sat, 16 Feb 2019 16:31:25 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/any/include/boost/math/distributions/geometric.hpp Sat Feb 16 16:31:25 2019 +0000 @@ -0,0 +1,516 @@ +// boost\math\distributions\geometric.hpp + +// Copyright John Maddock 2010. +// Copyright Paul A. Bristow 2010. + +// Use, modification and distribution are subject to the +// Boost Software License, Version 1.0. +// (See accompanying file LICENSE_1_0.txt +// or copy at http://www.boost.org/LICENSE_1_0.txt) + +// geometric distribution is a discrete probability distribution. +// It expresses the probability distribution of the number (k) of +// events, occurrences, failures or arrivals before the first success. +// supported on the set {0, 1, 2, 3...} + +// Note that the set includes zero (unlike some definitions that start at one). + +// The random variate k is the number of events, occurrences or arrivals. +// k argument may be integral, signed, or unsigned, or floating point. +// If necessary, it has already been promoted from an integral type. + +// Note that the geometric distribution +// (like others including the binomial, geometric & Bernoulli) +// is strictly defined as a discrete function: +// only integral values of k are envisaged. +// However because the method of calculation uses a continuous gamma function, +// it is convenient to treat it as if a continous function, +// and permit non-integral values of k. +// To enforce the strict mathematical model, users should use floor or ceil functions +// on k outside this function to ensure that k is integral. + +// See http://en.wikipedia.org/wiki/geometric_distribution +// http://documents.wolfram.com/v5/Add-onsLinks/StandardPackages/Statistics/DiscreteDistributions.html +// http://mathworld.wolfram.com/GeometricDistribution.html + +#ifndef BOOST_MATH_SPECIAL_GEOMETRIC_HPP +#define BOOST_MATH_SPECIAL_GEOMETRIC_HPP + +#include <boost/math/distributions/fwd.hpp> +#include <boost/math/special_functions/beta.hpp> // for ibeta(a, b, x) == Ix(a, b). +#include <boost/math/distributions/complement.hpp> // complement. +#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks domain_error & logic_error. +#include <boost/math/special_functions/fpclassify.hpp> // isnan. +#include <boost/math/tools/roots.hpp> // for root finding. +#include <boost/math/distributions/detail/inv_discrete_quantile.hpp> + +#include <boost/type_traits/is_floating_point.hpp> +#include <boost/type_traits/is_integral.hpp> +#include <boost/type_traits/is_same.hpp> +#include <boost/mpl/if.hpp> + +#include <limits> // using std::numeric_limits; +#include <utility> + +#if defined (BOOST_MSVC) +# pragma warning(push) +// This believed not now necessary, so commented out. +//# pragma warning(disable: 4702) // unreachable code. +// in domain_error_imp in error_handling. +#endif + +namespace boost +{ + namespace math + { + namespace geometric_detail + { + // Common error checking routines for geometric distribution function: + template <class RealType, class Policy> + inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& pol) + { + if( !(boost::math::isfinite)(p) || (p < 0) || (p > 1) ) + { + *result = policies::raise_domain_error<RealType>( + function, + "Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, pol); + return false; + } + return true; + } + + template <class RealType, class Policy> + inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& pol) + { + return check_success_fraction(function, p, result, pol); + } + + template <class RealType, class Policy> + inline bool check_dist_and_k(const char* function, const RealType& p, RealType k, RealType* result, const Policy& pol) + { + if(check_dist(function, p, result, pol) == false) + { + return false; + } + if( !(boost::math::isfinite)(k) || (k < 0) ) + { // Check k failures. + *result = policies::raise_domain_error<RealType>( + function, + "Number of failures argument is %1%, but must be >= 0 !", k, pol); + return false; + } + return true; + } // Check_dist_and_k + + template <class RealType, class Policy> + inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& pol) + { + if((check_dist(function, p, result, pol) && detail::check_probability(function, prob, result, pol)) == false) + { + return false; + } + return true; + } // check_dist_and_prob + } // namespace geometric_detail + + template <class RealType = double, class Policy = policies::policy<> > + class geometric_distribution + { + public: + typedef RealType value_type; + typedef Policy policy_type; + + geometric_distribution(RealType p) : m_p(p) + { // Constructor stores success_fraction p. + RealType result; + geometric_detail::check_dist( + "geometric_distribution<%1%>::geometric_distribution", + m_p, // Check success_fraction 0 <= p <= 1. + &result, Policy()); + } // geometric_distribution constructor. + + // Private data getter class member functions. + RealType success_fraction() const + { // Probability of success as fraction in range 0 to 1. + return m_p; + } + RealType successes() const + { // Total number of successes r = 1 (for compatibility with negative binomial?). + return 1; + } + + // Parameter estimation. + // (These are copies of negative_binomial distribution with successes = 1). + static RealType find_lower_bound_on_p( + RealType trials, + RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. + { + static const char* function = "boost::math::geometric<%1%>::find_lower_bound_on_p"; + RealType result = 0; // of error checks. + RealType successes = 1; + RealType failures = trials - successes; + if(false == detail::check_probability(function, alpha, &result, Policy()) + && geometric_detail::check_dist_and_k( + function, RealType(0), failures, &result, Policy())) + { + return result; + } + // Use complement ibeta_inv function for lower bound. + // This is adapted from the corresponding binomial formula + // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm + // This is a Clopper-Pearson interval, and may be overly conservative, + // see also "A Simple Improved Inferential Method for Some + // Discrete Distributions" Yong CAI and K. KRISHNAMOORTHY + // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf + // + return ibeta_inv(successes, failures + 1, alpha, static_cast<RealType*>(0), Policy()); + } // find_lower_bound_on_p + + static RealType find_upper_bound_on_p( + RealType trials, + RealType alpha) // alpha 0.05 equivalent to 95% for one-sided test. + { + static const char* function = "boost::math::geometric<%1%>::find_upper_bound_on_p"; + RealType result = 0; // of error checks. + RealType successes = 1; + RealType failures = trials - successes; + if(false == geometric_detail::check_dist_and_k( + function, RealType(0), failures, &result, Policy()) + && detail::check_probability(function, alpha, &result, Policy())) + { + return result; + } + if(failures == 0) + { + return 1; + }// Use complement ibetac_inv function for upper bound. + // Note adjusted failures value: *not* failures+1 as usual. + // This is adapted from the corresponding binomial formula + // here: http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm + // This is a Clopper-Pearson interval, and may be overly conservative, + // see also "A Simple Improved Inferential Method for Some + // Discrete Distributions" Yong CAI and K. Krishnamoorthy + // http://www.ucs.louisiana.edu/~kxk4695/Discrete_new.pdf + // + return ibetac_inv(successes, failures, alpha, static_cast<RealType*>(0), Policy()); + } // find_upper_bound_on_p + + // Estimate number of trials : + // "How many trials do I need to be P% sure of seeing k or fewer failures?" + + static RealType find_minimum_number_of_trials( + RealType k, // number of failures (k >= 0). + RealType p, // success fraction 0 <= p <= 1. + RealType alpha) // risk level threshold 0 <= alpha <= 1. + { + static const char* function = "boost::math::geometric<%1%>::find_minimum_number_of_trials"; + // Error checks: + RealType result = 0; + if(false == geometric_detail::check_dist_and_k( + function, p, k, &result, Policy()) + && detail::check_probability(function, alpha, &result, Policy())) + { + return result; + } + result = ibeta_inva(k + 1, p, alpha, Policy()); // returns n - k + return result + k; + } // RealType find_number_of_failures + + static RealType find_maximum_number_of_trials( + RealType k, // number of failures (k >= 0). + RealType p, // success fraction 0 <= p <= 1. + RealType alpha) // risk level threshold 0 <= alpha <= 1. + { + static const char* function = "boost::math::geometric<%1%>::find_maximum_number_of_trials"; + // Error checks: + RealType result = 0; + if(false == geometric_detail::check_dist_and_k( + function, p, k, &result, Policy()) + && detail::check_probability(function, alpha, &result, Policy())) + { + return result; + } + result = ibetac_inva(k + 1, p, alpha, Policy()); // returns n - k + return result + k; + } // RealType find_number_of_trials complemented + + private: + //RealType m_r; // successes fixed at unity. + RealType m_p; // success_fraction + }; // template <class RealType, class Policy> class geometric_distribution + + typedef geometric_distribution<double> geometric; // Reserved name of type double. + + template <class RealType, class Policy> + inline const std::pair<RealType, RealType> range(const geometric_distribution<RealType, Policy>& /* dist */) + { // Range of permissible values for random variable k. + using boost::math::tools::max_value; + return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer? + } + + template <class RealType, class Policy> + inline const std::pair<RealType, RealType> support(const geometric_distribution<RealType, Policy>& /* dist */) + { // Range of supported values for random variable k. + // This is range where cdf rises from 0 to 1, and outside it, the pdf is zero. + using boost::math::tools::max_value; + return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // max_integer? + } + + template <class RealType, class Policy> + inline RealType mean(const geometric_distribution<RealType, Policy>& dist) + { // Mean of geometric distribution = (1-p)/p. + return (1 - dist.success_fraction() ) / dist.success_fraction(); + } // mean + + // median implemented via quantile(half) in derived accessors. + + template <class RealType, class Policy> + inline RealType mode(const geometric_distribution<RealType, Policy>&) + { // Mode of geometric distribution = zero. + BOOST_MATH_STD_USING // ADL of std functions. + return 0; + } // mode + + template <class RealType, class Policy> + inline RealType variance(const geometric_distribution<RealType, Policy>& dist) + { // Variance of Binomial distribution = (1-p) / p^2. + return (1 - dist.success_fraction()) + / (dist.success_fraction() * dist.success_fraction()); + } // variance + + template <class RealType, class Policy> + inline RealType skewness(const geometric_distribution<RealType, Policy>& dist) + { // skewness of geometric distribution = 2-p / (sqrt(r(1-p)) + BOOST_MATH_STD_USING // ADL of std functions. + RealType p = dist.success_fraction(); + return (2 - p) / sqrt(1 - p); + } // skewness + + template <class RealType, class Policy> + inline RealType kurtosis(const geometric_distribution<RealType, Policy>& dist) + { // kurtosis of geometric distribution + // http://en.wikipedia.org/wiki/geometric is kurtosis_excess so add 3 + RealType p = dist.success_fraction(); + return 3 + (p*p - 6*p + 6) / (1 - p); + } // kurtosis + + template <class RealType, class Policy> + inline RealType kurtosis_excess(const geometric_distribution<RealType, Policy>& dist) + { // kurtosis excess of geometric distribution + // http://mathworld.wolfram.com/Kurtosis.html table of kurtosis_excess + RealType p = dist.success_fraction(); + return (p*p - 6*p + 6) / (1 - p); + } // kurtosis_excess + + // RealType standard_deviation(const geometric_distribution<RealType, Policy>& dist) + // standard_deviation provided by derived accessors. + // RealType hazard(const geometric_distribution<RealType, Policy>& dist) + // hazard of geometric distribution provided by derived accessors. + // RealType chf(const geometric_distribution<RealType, Policy>& dist) + // chf of geometric distribution provided by derived accessors. + + template <class RealType, class Policy> + inline RealType pdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k) + { // Probability Density/Mass Function. + BOOST_FPU_EXCEPTION_GUARD + BOOST_MATH_STD_USING // For ADL of math functions. + static const char* function = "boost::math::pdf(const geometric_distribution<%1%>&, %1%)"; + + RealType p = dist.success_fraction(); + RealType result = 0; + if(false == geometric_detail::check_dist_and_k( + function, + p, + k, + &result, Policy())) + { + return result; + } + if (k == 0) + { + return p; // success_fraction + } + RealType q = 1 - p; // Inaccurate for small p? + // So try to avoid inaccuracy for large or small p. + // but has little effect > last significant bit. + //cout << "p * pow(q, k) " << result << endl; // seems best whatever p + //cout << "exp(p * k * log1p(-p)) " << p * exp(k * log1p(-p)) << endl; + //if (p < 0.5) + //{ + // result = p * pow(q, k); + //} + //else + //{ + // result = p * exp(k * log1p(-p)); + //} + result = p * pow(q, k); + return result; + } // geometric_pdf + + template <class RealType, class Policy> + inline RealType cdf(const geometric_distribution<RealType, Policy>& dist, const RealType& k) + { // Cumulative Distribution Function of geometric. + static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)"; + + // k argument may be integral, signed, or unsigned, or floating point. + // If necessary, it has already been promoted from an integral type. + RealType p = dist.success_fraction(); + // Error check: + RealType result = 0; + if(false == geometric_detail::check_dist_and_k( + function, + p, + k, + &result, Policy())) + { + return result; + } + if(k == 0) + { + return p; // success_fraction + } + //RealType q = 1 - p; // Bad for small p + //RealType probability = 1 - std::pow(q, k+1); + + RealType z = boost::math::log1p(-p, Policy()) * (k + 1); + RealType probability = -boost::math::expm1(z, Policy()); + + return probability; + } // cdf Cumulative Distribution Function geometric. + + template <class RealType, class Policy> + inline RealType cdf(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c) + { // Complemented Cumulative Distribution Function geometric. + BOOST_MATH_STD_USING + static const char* function = "boost::math::cdf(const geometric_distribution<%1%>&, %1%)"; + // k argument may be integral, signed, or unsigned, or floating point. + // If necessary, it has already been promoted from an integral type. + RealType const& k = c.param; + geometric_distribution<RealType, Policy> const& dist = c.dist; + RealType p = dist.success_fraction(); + // Error check: + RealType result = 0; + if(false == geometric_detail::check_dist_and_k( + function, + p, + k, + &result, Policy())) + { + return result; + } + RealType z = boost::math::log1p(-p, Policy()) * (k+1); + RealType probability = exp(z); + return probability; + } // cdf Complemented Cumulative Distribution Function geometric. + + template <class RealType, class Policy> + inline RealType quantile(const geometric_distribution<RealType, Policy>& dist, const RealType& x) + { // Quantile, percentile/100 or Percent Point geometric function. + // Return the number of expected failures k for a given probability p. + + // Inverse cumulative Distribution Function or Quantile (percentile / 100) of geometric Probability. + // k argument may be integral, signed, or unsigned, or floating point. + + static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)"; + BOOST_MATH_STD_USING // ADL of std functions. + + RealType success_fraction = dist.success_fraction(); + // Check dist and x. + RealType result = 0; + if(false == geometric_detail::check_dist_and_prob + (function, success_fraction, x, &result, Policy())) + { + return result; + } + + // Special cases. + if (x == 1) + { // Would need +infinity failures for total confidence. + result = policies::raise_overflow_error<RealType>( + function, + "Probability argument is 1, which implies infinite failures !", Policy()); + return result; + // usually means return +std::numeric_limits<RealType>::infinity(); + // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR + } + if (x == 0) + { // No failures are expected if P = 0. + return 0; // Total trials will be just dist.successes. + } + // if (P <= pow(dist.success_fraction(), 1)) + if (x <= success_fraction) + { // p <= pdf(dist, 0) == cdf(dist, 0) + return 0; + } + if (x == 1) + { + return 0; + } + + // log(1-x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small + result = boost::math::log1p(-x, Policy()) / boost::math::log1p(-success_fraction, Policy()) - 1; + // Subtract a few epsilons here too? + // to make sure it doesn't slip over, so ceil would be one too many. + return result; + } // RealType quantile(const geometric_distribution dist, p) + + template <class RealType, class Policy> + inline RealType quantile(const complemented2_type<geometric_distribution<RealType, Policy>, RealType>& c) + { // Quantile or Percent Point Binomial function. + // Return the number of expected failures k for a given + // complement of the probability Q = 1 - P. + static const char* function = "boost::math::quantile(const geometric_distribution<%1%>&, %1%)"; + BOOST_MATH_STD_USING + // Error checks: + RealType x = c.param; + const geometric_distribution<RealType, Policy>& dist = c.dist; + RealType success_fraction = dist.success_fraction(); + RealType result = 0; + if(false == geometric_detail::check_dist_and_prob( + function, + success_fraction, + x, + &result, Policy())) + { + return result; + } + + // Special cases: + if(x == 1) + { // There may actually be no answer to this question, + // since the probability of zero failures may be non-zero, + return 0; // but zero is the best we can do: + } + if (-x <= boost::math::powm1(dist.success_fraction(), dist.successes(), Policy())) + { // q <= cdf(complement(dist, 0)) == pdf(dist, 0) + return 0; // + } + if(x == 0) + { // Probability 1 - Q == 1 so infinite failures to achieve certainty. + // Would need +infinity failures for total confidence. + result = policies::raise_overflow_error<RealType>( + function, + "Probability argument complement is 0, which implies infinite failures !", Policy()); + return result; + // usually means return +std::numeric_limits<RealType>::infinity(); + // unless #define BOOST_MATH_THROW_ON_OVERFLOW_ERROR + } + // log(x) /log(1-success_fraction) -1; but use log1p in case success_fraction is small + result = log(x) / boost::math::log1p(-success_fraction, Policy()) - 1; + return result; + + } // quantile complement + + } // namespace math +} // namespace boost + +// This include must be at the end, *after* the accessors +// for this distribution have been defined, in order to +// keep compilers that support two-phase lookup happy. +#include <boost/math/distributions/detail/derived_accessors.hpp> + +#if defined (BOOST_MSVC) +# pragma warning(pop) +#endif + +#endif // BOOST_MATH_SPECIAL_GEOMETRIC_HPP