diff src/fftw-3.3.8/simd-support/simd-generic256.h @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.8/simd-support/simd-generic256.h	Tue Nov 19 14:52:55 2019 +0000
@@ -0,0 +1,333 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * Generic256d added by Romain Dolbeau, and turned into simd-generic256.h
+ * with single & double precision by Erik Lindahl.
+ * Romain Dolbeau hereby places his modifications in the public domain.
+ * Erik Lindahl hereby places his modifications in the public domain.
+ * 
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
+#  error "Generic simd256 only works in single or double precision"
+#endif
+
+#define SIMD_SUFFIX  _generic_simd256  /* for renaming */
+
+#ifdef FFTW_SINGLE
+#  define DS(d,s) s /* single-precision option */
+#  define VDUPL(x) {x[0],x[0],x[2],x[2],x[4],x[4],x[6],x[6]}
+#  define VDUPH(x) {x[1],x[1],x[3],x[3],x[5],x[5],x[7],x[7]}
+#  define DVK(var, val) V var = {val,val,val,val,val,val,val,val}
+#else
+#  define DS(d,s) d /* double-precision option */
+#  define VDUPL(x) {x[0],x[0],x[2],x[2]}
+#  define VDUPH(x) {x[1],x[1],x[3],x[3]}
+#  define DVK(var, val) V var = {val, val, val, val}
+#endif
+
+#define VL DS(2,4)         /* SIMD vector length, in term of complex numbers */
+#define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
+#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
+
+typedef DS(double,float) V __attribute__ ((vector_size(32)));
+
+#define VADD(a,b) ((a)+(b))
+#define VSUB(a,b) ((a)-(b))
+#define VMUL(a,b) ((a)*(b))
+
+#define LDK(x) x
+
+static inline V LDA(const R *x, INT ivs, const R *aligned_like)
+{
+    V var;
+    (void)aligned_like; /* UNUSED */
+    return *(const V *)x;
+}
+
+static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
+{
+    (void)aligned_like; /* UNUSED */
+    (void)ovs; /* UNUSED */
+    *(V *)x = v;
+}
+
+static inline V LD(const R *x, INT ivs, const R *aligned_like)
+{
+    V var;
+    (void)aligned_like; /* UNUSED */
+    var[0] = x[0];
+    var[1] = x[1];
+    var[2] = x[ivs];
+    var[3] = x[ivs+1];
+#ifdef FFTW_SINGLE
+    var[4] = x[2*ivs];
+    var[5] = x[2*ivs+1];
+    var[6] = x[3*ivs];
+    var[7] = x[3*ivs+1];
+#endif
+    return var;
+}
+
+
+/* ST has to be separate due to the storage hack requiring reverse order */
+
+static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
+{
+     (void)aligned_like; /* UNUSED */
+#ifdef FFTW_SINGLE
+    *(x + 3*ovs    ) = v[6];
+    *(x + 3*ovs + 1) = v[7];
+    *(x + 2*ovs    ) = v[4];
+    *(x + 2*ovs + 1) = v[5];
+    *(x + ovs      ) = v[2];
+    *(x + ovs   + 1) = v[3];
+    *(x            ) = v[0];
+    *(x         + 1) = v[1];
+#else
+    *(x  +  ovs    ) = v[2];
+    *(x  +  ovs + 1) = v[3];
+    *(x            ) = v[0];
+    *(x         + 1) = v[1];
+#endif
+}
+
+#ifdef FFTW_SINGLE
+#define STM2(x, v, ovs, a) /* no-op */
+static inline void STN2(R *x, V v0, V v1, INT ovs)
+{
+    x[        0] = v0[0];
+    x[        1] = v0[1];
+    x[        2] = v1[0];
+    x[        3] = v1[1];
+    x[  ovs    ] = v0[2];
+    x[  ovs + 1] = v0[3];
+    x[  ovs + 2] = v1[2];
+    x[  ovs + 3] = v1[3];
+    x[2*ovs    ] = v0[4];
+    x[2*ovs + 1] = v0[5];
+    x[2*ovs + 2] = v1[4];
+    x[2*ovs + 3] = v1[5];
+    x[3*ovs    ] = v0[6];
+    x[3*ovs + 1] = v0[7];
+    x[3*ovs + 2] = v1[6];
+    x[3*ovs + 3] = v1[7];
+}
+
+#  define STM4(x, v, ovs, aligned_like) /* no-op */
+static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs)
+{
+    *(x              ) = v0[0];
+    *(x           + 1) = v1[0];
+    *(x           + 2) = v2[0];
+    *(x           + 3) = v3[0];
+    *(x     + ovs    ) = v0[1];
+    *(x     + ovs + 1) = v1[1];
+    *(x     + ovs + 2) = v2[1];
+    *(x     + ovs + 3) = v3[1];
+    *(x + 2 * ovs    ) = v0[2];
+    *(x + 2 * ovs + 1) = v1[2];
+    *(x + 2 * ovs + 2) = v2[2];
+    *(x + 2 * ovs + 3) = v3[2];
+    *(x + 3 * ovs    ) = v0[3];
+    *(x + 3 * ovs + 1) = v1[3];
+    *(x + 3 * ovs + 2) = v2[3];
+    *(x + 3 * ovs + 3) = v3[3];
+    *(x + 4 * ovs    ) = v0[4];
+    *(x + 4 * ovs + 1) = v1[4];
+    *(x + 4 * ovs + 2) = v2[4];
+    *(x + 4 * ovs + 3) = v3[4];
+    *(x + 5 * ovs    ) = v0[5];
+    *(x + 5 * ovs + 1) = v1[5];
+    *(x + 5 * ovs + 2) = v2[5];
+    *(x + 5 * ovs + 3) = v3[5];
+    *(x + 6 * ovs    ) = v0[6];
+    *(x + 6 * ovs + 1) = v1[6];
+    *(x + 6 * ovs + 2) = v2[6];
+    *(x + 6 * ovs + 3) = v3[6];
+    *(x + 7 * ovs    ) = v0[7];
+    *(x + 7 * ovs + 1) = v1[7];
+    *(x + 7 * ovs + 2) = v2[7];
+    *(x + 7 * ovs + 3) = v3[7];
+}
+
+#else
+/* FFTW_DOUBLE */
+
+#define STM2 ST
+#define STN2(x, v0, v1, ovs) /* nop */
+#define STM4(x, v, ovs, aligned_like) /* no-op */
+
+static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs) {
+  *(x              ) = v0[0];
+  *(x           + 1) = v1[0];
+  *(x           + 2) = v2[0];
+  *(x           + 3) = v3[0];
+  *(x     + ovs    ) = v0[1];
+  *(x     + ovs + 1) = v1[1];
+  *(x     + ovs + 2) = v2[1];
+  *(x     + ovs + 3) = v3[1];
+  *(x + 2 * ovs    ) = v0[2];
+  *(x + 2 * ovs + 1) = v1[2];
+  *(x + 2 * ovs + 2) = v2[2];
+  *(x + 2 * ovs + 3) = v3[2];
+  *(x + 3 * ovs    ) = v0[3];
+  *(x + 3 * ovs + 1) = v1[3];
+  *(x + 3 * ovs + 2) = v2[3];
+  *(x + 3 * ovs + 3) = v3[3];
+}
+#endif
+
+static inline V FLIP_RI(V x)
+{
+#ifdef FFTW_SINGLE
+    return (V){x[1],x[0],x[3],x[2],x[5],x[4],x[7],x[6]};
+#else
+    return (V){x[1],x[0],x[3],x[2]};
+#endif
+}
+
+static inline V VCONJ(V x)
+{
+#ifdef FFTW_SINGLE
+    return (x * (V){1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,-1.0});
+#else
+    return (x * (V){1.0,-1.0,1.0,-1.0});
+#endif
+}
+
+static inline V VBYI(V x)
+{
+     return FLIP_RI(VCONJ(x));
+}
+
+/* FMA support */
+#define VFMA(a, b, c) VADD(c, VMUL(a, b))
+#define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
+#define VFMS(a, b, c) VSUB(VMUL(a, b), c)
+#define VFMAI(b, c) VADD(c, VBYI(b))
+#define VFNMSI(b, c) VSUB(c, VBYI(b))
+#define VFMACONJ(b,c)  VADD(VCONJ(b),c)
+#define VFMSCONJ(b,c)  VSUB(VCONJ(b),c)
+#define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
+
+static inline V VZMUL(V tx, V sr)
+{
+     V tr = VDUPL(tx);
+     V ti = VDUPH(tx);
+     tr = VMUL(sr, tr);
+     sr = VBYI(sr);
+     return VFMA(ti, sr, tr);
+}
+
+static inline V VZMULJ(V tx, V sr)
+{
+     V tr = VDUPL(tx);
+     V ti = VDUPH(tx);
+     tr = VMUL(sr, tr);
+     sr = VBYI(sr);
+     return VFNMS(ti, sr, tr);
+}
+
+static inline V VZMULI(V tx, V sr)
+{
+     V tr = VDUPL(tx);
+     V ti = VDUPH(tx);
+     ti = VMUL(ti, sr);
+     sr = VBYI(sr);
+     return VFMS(tr, sr, ti);
+}
+
+static inline V VZMULIJ(V tx, V sr)
+{
+     V tr = VDUPL(tx);
+     V ti = VDUPH(tx);
+     ti = VMUL(ti, sr);
+     sr = VBYI(sr);
+     return VFMA(tr, sr, ti);
+}
+
+/* twiddle storage #1: compact, slower */
+#ifdef FFTW_SINGLE
+# define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}, {TW_CEXP, v+2, x}, {TW_CEXP, v+3, x}
+#else
+# define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
+#endif
+#define TWVL1 (VL)
+
+static inline V BYTW1(const R *t, V sr)
+{
+     return VZMUL(LDA(t, 2, t), sr);
+}
+
+static inline V BYTWJ1(const R *t, V sr)
+{
+     return VZMULJ(LDA(t, 2, t), sr);
+}
+
+/* twiddle storage #2: twice the space, faster (when in cache) */
+#ifdef FFTW_SINGLE
+# define VTW2(v,x)                                                      \
+   {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},  \
+   {TW_COS, v+2, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, {TW_COS, v+3, x}, \
+   {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}, \
+   {TW_SIN, v+2, -x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, -x}, {TW_SIN, v+3, x}
+#else
+# define VTW2(v,x)                                                      \
+   {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},  \
+   {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
+#endif
+#define TWVL2 (2 * VL)
+
+static inline V BYTW2(const R *t, V sr)
+{
+     const V *twp = (const V *)t;
+     V si = FLIP_RI(sr);
+     V tr = twp[0], ti = twp[1];
+     return VFMA(tr, sr, VMUL(ti, si));
+}
+
+static inline V BYTWJ2(const R *t, V sr)
+{
+     const V *twp = (const V *)t;
+     V si = FLIP_RI(sr);
+     V tr = twp[0], ti = twp[1];
+     return VFNMS(ti, si, VMUL(tr, sr));
+}
+
+/* twiddle storage #3 */
+#define VTW3 VTW1
+#define TWVL3 TWVL1
+
+/* twiddle storage for split arrays */
+#ifdef FFTW_SINGLE
+# define VTWS(v,x)                                                      \
+  {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
+  {TW_COS, v+4, x}, {TW_COS, v+5, x}, {TW_COS, v+6, x}, {TW_COS, v+7, x}, \
+  {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}, \
+  {TW_SIN, v+4, x}, {TW_SIN, v+5, x}, {TW_SIN, v+6, x}, {TW_SIN, v+7, x}
+#else
+# define VTWS(v,x)                                                      \
+  {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
+  {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}  
+#endif
+#define TWVLS (2 * VL)
+
+#define VLEAVE() /* nothing */
+
+#include "simd-common.h"