Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/reodft/reodft00e-splitradix.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/reodft/reodft00e-splitradix.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,354 @@ +/* + * Copyright (c) 2005 Matteo Frigo + * Copyright (c) 2005 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + + +/* Do an R{E,O}DFT00 problem (of an odd length n) recursively via an + R{E,O}DFT00 problem and an RDFT problem of half the length. + + This works by "logically" expanding the array to a real-even/odd DFT of + length 2n-/+2 and then applying the split-radix algorithm. + + In this way, we can avoid having to pad to twice the length + (ala redft00-r2hc-pad), saving a factor of ~2 for n=2^m+/-1, + but don't incur the accuracy loss that the "ordinary" algorithm + sacrifices (ala redft00-r2hc.c). +*/ + +#include "reodft/reodft.h" + +typedef struct { + solver super; +} S; + +typedef struct { + plan_rdft super; + plan *clde, *cldo; + twid *td; + INT is, os; + INT n; + INT vl; + INT ivs, ovs; +} P; + +/* redft00 */ +static void apply_e(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + INT is = ego->is, os = ego->os; + INT i, j, n = ego->n + 1, n2 = (n-1)/2; + INT iv, vl = ego->vl; + INT ivs = ego->ivs, ovs = ego->ovs; + R *W = ego->td->W - 2; + R *buf; + + buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); + + for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { + /* do size (n-1)/2 r2hc transform of odd-indexed elements + with stride 4, "wrapping around" end of array with even + boundary conditions */ + for (j = 0, i = 1; i < n; i += 4) + buf[j++] = I[is * i]; + for (i = 2*n-2-i; i > 0; i -= 4) + buf[j++] = I[is * i]; + { + plan_rdft *cld = (plan_rdft *) ego->cldo; + cld->apply((plan *) cld, buf, buf); + } + + /* do size (n+1)/2 redft00 of the even-indexed elements, + writing to O: */ + { + plan_rdft *cld = (plan_rdft *) ego->clde; + cld->apply((plan *) cld, I, O); + } + + /* combine the results with the twiddle factors to get output */ + { /* DC element */ + E b20 = O[0], b0 = K(2.0) * buf[0]; + O[0] = b20 + b0; + O[2*(n2*os)] = b20 - b0; + /* O[n2*os] = O[n2*os]; */ + } + for (i = 1; i < n2 - i; ++i) { + E ap, am, br, bi, wr, wi, wbr, wbi; + br = buf[i]; + bi = buf[n2 - i]; + wr = W[2*i]; + wi = W[2*i+1]; +#if FFT_SIGN == -1 + wbr = K(2.0) * (wr*br + wi*bi); + wbi = K(2.0) * (wr*bi - wi*br); +#else + wbr = K(2.0) * (wr*br - wi*bi); + wbi = K(2.0) * (wr*bi + wi*br); +#endif + ap = O[i*os]; + O[i*os] = ap + wbr; + O[(2*n2 - i)*os] = ap - wbr; + am = O[(n2 - i)*os]; +#if FFT_SIGN == -1 + O[(n2 - i)*os] = am - wbi; + O[(n2 + i)*os] = am + wbi; +#else + O[(n2 - i)*os] = am + wbi; + O[(n2 + i)*os] = am - wbi; +#endif + } + if (i == n2 - i) { /* Nyquist element */ + E ap, wbr; + wbr = K(2.0) * (W[2*i] * buf[i]); + ap = O[i*os]; + O[i*os] = ap + wbr; + O[(2*n2 - i)*os] = ap - wbr; + } + } + + X(ifree)(buf); +} + +/* rodft00 */ +static void apply_o(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + INT is = ego->is, os = ego->os; + INT i, j, n = ego->n - 1, n2 = (n+1)/2; + INT iv, vl = ego->vl; + INT ivs = ego->ivs, ovs = ego->ovs; + R *W = ego->td->W - 2; + R *buf; + + buf = (R *) MALLOC(sizeof(R) * n2, BUFFERS); + + for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { + /* do size (n+1)/2 r2hc transform of even-indexed elements + with stride 4, "wrapping around" end of array with odd + boundary conditions */ + for (j = 0, i = 0; i < n; i += 4) + buf[j++] = I[is * i]; + for (i = 2*n-i; i > 0; i -= 4) + buf[j++] = -I[is * i]; + { + plan_rdft *cld = (plan_rdft *) ego->cldo; + cld->apply((plan *) cld, buf, buf); + } + + /* do size (n-1)/2 rodft00 of the odd-indexed elements, + writing to O: */ + { + plan_rdft *cld = (plan_rdft *) ego->clde; + if (I == O) { + /* can't use I+is and I, subplan would lose in-placeness */ + cld->apply((plan *) cld, I + is, I + is); + /* we could maybe avoid this copy by modifying the + twiddle loop, but currently I can't be bothered. */ + A(is >= os); + for (i = 0; i < n2-1; ++i) + O[os*i] = I[is*(i+1)]; + } + else + cld->apply((plan *) cld, I + is, O); + } + + /* combine the results with the twiddle factors to get output */ + O[(n2-1)*os] = K(2.0) * buf[0]; + for (i = 1; i < n2 - i; ++i) { + E ap, am, br, bi, wr, wi, wbr, wbi; + br = buf[i]; + bi = buf[n2 - i]; + wr = W[2*i]; + wi = W[2*i+1]; +#if FFT_SIGN == -1 + wbr = K(2.0) * (wr*br + wi*bi); + wbi = K(2.0) * (wi*br - wr*bi); +#else + wbr = K(2.0) * (wr*br - wi*bi); + wbi = K(2.0) * (wr*bi + wi*br); +#endif + ap = O[(i-1)*os]; + O[(i-1)*os] = wbi + ap; + O[(2*n2-1 - i)*os] = wbi - ap; + am = O[(n2-1 - i)*os]; +#if FFT_SIGN == -1 + O[(n2-1 - i)*os] = wbr + am; + O[(n2-1 + i)*os] = wbr - am; +#else + O[(n2-1 - i)*os] = wbr + am; + O[(n2-1 + i)*os] = wbr - am; +#endif + } + if (i == n2 - i) { /* Nyquist element */ + E ap, wbi; + wbi = K(2.0) * (W[2*i+1] * buf[i]); + ap = O[(i-1)*os]; + O[(i-1)*os] = wbi + ap; + O[(2*n2-1 - i)*os] = wbi - ap; + } + } + + X(ifree)(buf); +} + +static void awake(plan *ego_, enum wakefulness wakefulness) +{ + P *ego = (P *) ego_; + static const tw_instr reodft00e_tw[] = { + { TW_COS, 1, 1 }, + { TW_SIN, 1, 1 }, + { TW_NEXT, 1, 0 } + }; + + X(plan_awake)(ego->clde, wakefulness); + X(plan_awake)(ego->cldo, wakefulness); + X(twiddle_awake)(wakefulness, &ego->td, reodft00e_tw, + 2*ego->n, 1, ego->n/4); +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(plan_destroy_internal)(ego->cldo); + X(plan_destroy_internal)(ego->clde); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + if (ego->super.apply == apply_e) + p->print(p, "(redft00e-splitradix-%D%v%(%p%)%(%p%))", + ego->n + 1, ego->vl, ego->clde, ego->cldo); + else + p->print(p, "(rodft00e-splitradix-%D%v%(%p%)%(%p%))", + ego->n - 1, ego->vl, ego->clde, ego->cldo); +} + +static int applicable0(const solver *ego_, const problem *p_) +{ + const problem_rdft *p = (const problem_rdft *) p_; + UNUSED(ego_); + + return (1 + && p->sz->rnk == 1 + && p->vecsz->rnk <= 1 + && (p->kind[0] == REDFT00 || p->kind[0] == RODFT00) + && p->sz->dims[0].n > 1 /* don't create size-0 sub-plans */ + && p->sz->dims[0].n % 2 /* odd: 4 divides "logical" DFT */ + && (p->I != p->O || p->vecsz->rnk == 0 + || p->vecsz->dims[0].is == p->vecsz->dims[0].os) + && (p->kind[0] != RODFT00 || p->I != p->O || + p->sz->dims[0].is >= p->sz->dims[0].os) /* laziness */ + ); +} + +static int applicable(const solver *ego, const problem *p, const planner *plnr) +{ + return (!NO_SLOWP(plnr) && applicable0(ego, p)); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + P *pln; + const problem_rdft *p; + plan *clde, *cldo; + R *buf; + INT n, n0; + opcnt ops; + int inplace_odd; + + static const plan_adt padt = { + X(rdft_solve), awake, print, destroy + }; + + if (!applicable(ego_, p_, plnr)) + return (plan *)0; + + p = (const problem_rdft *) p_; + + n = (n0 = p->sz->dims[0].n) + (p->kind[0] == REDFT00 ? (INT)-1 : (INT)1); + A(n > 0 && n % 2 == 0); + buf = (R *) MALLOC(sizeof(R) * (n/2), BUFFERS); + + inplace_odd = p->kind[0]==RODFT00 && p->I == p->O; + clde = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( + X(mktensor_1d)(n0-n/2, 2*p->sz->dims[0].is, + inplace_odd ? p->sz->dims[0].is + : p->sz->dims[0].os), + X(mktensor_0d)(), + TAINT(p->I + + p->sz->dims[0].is * (p->kind[0]==RODFT00), + p->vecsz->rnk ? p->vecsz->dims[0].is : 0), + TAINT(p->O + + p->sz->dims[0].is * inplace_odd, + p->vecsz->rnk ? p->vecsz->dims[0].os : 0), + p->kind[0])); + if (!clde) { + X(ifree)(buf); + return (plan *)0; + } + + cldo = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)( + X(mktensor_1d)(n/2, 1, 1), + X(mktensor_0d)(), + buf, buf, R2HC)); + X(ifree)(buf); + if (!cldo) + return (plan *)0; + + pln = MKPLAN_RDFT(P, &padt, p->kind[0] == REDFT00 ? apply_e : apply_o); + + pln->n = n; + pln->is = p->sz->dims[0].is; + pln->os = p->sz->dims[0].os; + pln->clde = clde; + pln->cldo = cldo; + pln->td = 0; + + X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); + + X(ops_zero)(&ops); + ops.other = n/2; + ops.add = (p->kind[0]==REDFT00 ? (INT)2 : (INT)0) + + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; + ops.mul = 1 + (n/2-1)/2 * 6 + ((n/2)%2==0) * 2; + + /* tweak ops.other so that r2hc-pad is used for small sizes, which + seems to be a lot faster on my machine: */ + ops.other += 256; + + X(ops_zero)(&pln->super.super.ops); + X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); + X(ops_madd2)(pln->vl, &clde->ops, &pln->super.super.ops); + X(ops_madd2)(pln->vl, &cldo->ops, &pln->super.super.ops); + + return &(pln->super.super); +} + +/* constructor */ +static solver *mksolver(void) +{ + static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + return &(slv->super); +} + +void X(reodft00e_splitradix_register)(planner *p) +{ + REGISTER_SOLVER(p, mksolver()); +}