Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cf/r2cf_32.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cf/r2cf_32.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,612 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:06:27 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -name r2cf_32 -include rdft/scalar/r2cf.h */ + +/* + * This function contains 156 FP additions, 68 FP multiplications, + * (or, 88 additions, 0 multiplications, 68 fused multiply/add), + * 54 stack variables, 7 constants, and 64 memory accesses + */ +#include "rdft/scalar/r2cf.h" + +static void r2cf_32(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP668178637, +0.668178637919298919997757686523080761552472251); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP198912367, +0.198912367379658006911597622644676228597850501); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + DK(KP414213562, +0.414213562373095048801688724209698078569671875); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(128, rs), MAKE_VOLATILE_STRIDE(128, csr), MAKE_VOLATILE_STRIDE(128, csi)) { + E T7, T2b, Tv, T1h, Te, T2n, Ty, T1i, Tt, T2d, TF, T1l, Tm, T2c, TC; + E T1k, T1Z, T22, T2k, T2j, T1e, T1C, T19, T1B, T1S, T1V, T2h, T2g, TX, T1z; + E TS, T1y; + { + E T1, T2, T3, T4, T5, T6; + T1 = R0[0]; + T2 = R0[WS(rs, 8)]; + T3 = T1 + T2; + T4 = R0[WS(rs, 4)]; + T5 = R0[WS(rs, 12)]; + T6 = T4 + T5; + T7 = T3 + T6; + T2b = T3 - T6; + Tv = T1 - T2; + T1h = T4 - T5; + } + { + E Ta, Tw, Td, Tx; + { + E T8, T9, Tb, Tc; + T8 = R0[WS(rs, 2)]; + T9 = R0[WS(rs, 10)]; + Ta = T8 + T9; + Tw = T8 - T9; + Tb = R0[WS(rs, 14)]; + Tc = R0[WS(rs, 6)]; + Td = Tb + Tc; + Tx = Tb - Tc; + } + Te = Ta + Td; + T2n = Td - Ta; + Ty = Tw + Tx; + T1i = Tx - Tw; + } + { + E Tp, TD, Ts, TE; + { + E Tn, To, Tq, Tr; + Tn = R0[WS(rs, 15)]; + To = R0[WS(rs, 7)]; + Tp = Tn + To; + TD = Tn - To; + Tq = R0[WS(rs, 3)]; + Tr = R0[WS(rs, 11)]; + Ts = Tq + Tr; + TE = Tq - Tr; + } + Tt = Tp + Ts; + T2d = Tp - Ts; + TF = FMA(KP414213562, TE, TD); + T1l = FNMS(KP414213562, TD, TE); + } + { + E Ti, TA, Tl, TB; + { + E Tg, Th, Tj, Tk; + Tg = R0[WS(rs, 1)]; + Th = R0[WS(rs, 9)]; + Ti = Tg + Th; + TA = Tg - Th; + Tj = R0[WS(rs, 5)]; + Tk = R0[WS(rs, 13)]; + Tl = Tj + Tk; + TB = Tj - Tk; + } + Tm = Ti + Tl; + T2c = Ti - Tl; + TC = FNMS(KP414213562, TB, TA); + T1k = FMA(KP414213562, TA, TB); + } + { + E T11, T1X, T1c, T1Y, T14, T20, T17, T21, T1d, T18; + { + E TZ, T10, T1a, T1b; + TZ = R1[WS(rs, 15)]; + T10 = R1[WS(rs, 7)]; + T11 = TZ - T10; + T1X = TZ + T10; + T1a = R1[WS(rs, 11)]; + T1b = R1[WS(rs, 3)]; + T1c = T1a - T1b; + T1Y = T1b + T1a; + } + { + E T12, T13, T15, T16; + T12 = R1[WS(rs, 1)]; + T13 = R1[WS(rs, 9)]; + T14 = T12 - T13; + T20 = T12 + T13; + T15 = R1[WS(rs, 13)]; + T16 = R1[WS(rs, 5)]; + T17 = T15 - T16; + T21 = T15 + T16; + } + T1Z = T1X + T1Y; + T22 = T20 + T21; + T2k = T21 - T20; + T2j = T1X - T1Y; + T1d = T17 - T14; + T1e = FMA(KP707106781, T1d, T1c); + T1C = FNMS(KP707106781, T1d, T1c); + T18 = T14 + T17; + T19 = FMA(KP707106781, T18, T11); + T1B = FNMS(KP707106781, T18, T11); + } + { + E TK, T1Q, TV, T1R, TN, T1T, TQ, T1U, TW, TR; + { + E TI, TJ, TT, TU; + TI = R1[0]; + TJ = R1[WS(rs, 8)]; + TK = TI - TJ; + T1Q = TI + TJ; + TT = R1[WS(rs, 4)]; + TU = R1[WS(rs, 12)]; + TV = TT - TU; + T1R = TT + TU; + } + { + E TL, TM, TO, TP; + TL = R1[WS(rs, 2)]; + TM = R1[WS(rs, 10)]; + TN = TL - TM; + T1T = TL + TM; + TO = R1[WS(rs, 14)]; + TP = R1[WS(rs, 6)]; + TQ = TO - TP; + T1U = TO + TP; + } + T1S = T1Q + T1R; + T1V = T1T + T1U; + T2h = T1U - T1T; + T2g = T1Q - T1R; + TW = TN - TQ; + TX = FMA(KP707106781, TW, TV); + T1z = FNMS(KP707106781, TW, TV); + TR = TN + TQ; + TS = FMA(KP707106781, TR, TK); + T1y = FNMS(KP707106781, TR, TK); + } + { + E Tf, Tu, T27, T28, T29, T2a; + Tf = T7 + Te; + Tu = Tm + Tt; + T27 = Tf + Tu; + T28 = T1S + T1V; + T29 = T1Z + T22; + T2a = T28 + T29; + Cr[WS(csr, 8)] = Tf - Tu; + Ci[WS(csi, 8)] = T29 - T28; + Cr[WS(csr, 16)] = T27 - T2a; + Cr[0] = T27 + T2a; + } + { + E T1P, T25, T24, T26, T1W, T23; + T1P = T7 - Te; + T25 = Tt - Tm; + T1W = T1S - T1V; + T23 = T1Z - T22; + T24 = T1W + T23; + T26 = T23 - T1W; + Cr[WS(csr, 12)] = FNMS(KP707106781, T24, T1P); + Ci[WS(csi, 12)] = FMS(KP707106781, T26, T25); + Cr[WS(csr, 4)] = FMA(KP707106781, T24, T1P); + Ci[WS(csi, 4)] = FMA(KP707106781, T26, T25); + } + { + E T2f, T2v, T2p, T2r, T2m, T2q, T2u, T2w, T2e, T2o; + T2e = T2c + T2d; + T2f = FMA(KP707106781, T2e, T2b); + T2v = FNMS(KP707106781, T2e, T2b); + T2o = T2d - T2c; + T2p = FNMS(KP707106781, T2o, T2n); + T2r = FMA(KP707106781, T2o, T2n); + { + E T2i, T2l, T2s, T2t; + T2i = FMA(KP414213562, T2h, T2g); + T2l = FNMS(KP414213562, T2k, T2j); + T2m = T2i + T2l; + T2q = T2l - T2i; + T2s = FNMS(KP414213562, T2g, T2h); + T2t = FMA(KP414213562, T2j, T2k); + T2u = T2s + T2t; + T2w = T2t - T2s; + } + Cr[WS(csr, 14)] = FNMS(KP923879532, T2m, T2f); + Ci[WS(csi, 14)] = FMS(KP923879532, T2u, T2r); + Cr[WS(csr, 2)] = FMA(KP923879532, T2m, T2f); + Ci[WS(csi, 2)] = FMA(KP923879532, T2u, T2r); + Ci[WS(csi, 6)] = FMS(KP923879532, T2q, T2p); + Cr[WS(csr, 6)] = FMA(KP923879532, T2w, T2v); + Ci[WS(csi, 10)] = FMA(KP923879532, T2q, T2p); + Cr[WS(csr, 10)] = FNMS(KP923879532, T2w, T2v); + } + { + E TH, T1t, T1s, T1u, T1g, T1o, T1n, T1p; + { + E Tz, TG, T1q, T1r; + Tz = FMA(KP707106781, Ty, Tv); + TG = TC + TF; + TH = FMA(KP923879532, TG, Tz); + T1t = FNMS(KP923879532, TG, Tz); + T1q = FMA(KP198912367, T19, T1e); + T1r = FMA(KP198912367, TS, TX); + T1s = T1q - T1r; + T1u = T1r + T1q; + } + { + E TY, T1f, T1j, T1m; + TY = FNMS(KP198912367, TX, TS); + T1f = FNMS(KP198912367, T1e, T19); + T1g = TY + T1f; + T1o = T1f - TY; + T1j = FNMS(KP707106781, T1i, T1h); + T1m = T1k + T1l; + T1n = FNMS(KP923879532, T1m, T1j); + T1p = FMA(KP923879532, T1m, T1j); + } + Cr[WS(csr, 15)] = FNMS(KP980785280, T1g, TH); + Ci[WS(csi, 15)] = FMA(KP980785280, T1s, T1p); + Cr[WS(csr, 1)] = FMA(KP980785280, T1g, TH); + Ci[WS(csi, 1)] = FMS(KP980785280, T1s, T1p); + Ci[WS(csi, 7)] = FMA(KP980785280, T1o, T1n); + Cr[WS(csr, 7)] = FMA(KP980785280, T1u, T1t); + Ci[WS(csi, 9)] = FMS(KP980785280, T1o, T1n); + Cr[WS(csr, 9)] = FNMS(KP980785280, T1u, T1t); + } + { + E T1x, T1N, T1M, T1O, T1E, T1I, T1H, T1J; + { + E T1v, T1w, T1K, T1L; + T1v = FNMS(KP707106781, Ty, Tv); + T1w = T1k - T1l; + T1x = FMA(KP923879532, T1w, T1v); + T1N = FNMS(KP923879532, T1w, T1v); + T1K = FNMS(KP668178637, T1y, T1z); + T1L = FNMS(KP668178637, T1B, T1C); + T1M = T1K - T1L; + T1O = T1K + T1L; + } + { + E T1A, T1D, T1F, T1G; + T1A = FMA(KP668178637, T1z, T1y); + T1D = FMA(KP668178637, T1C, T1B); + T1E = T1A + T1D; + T1I = T1D - T1A; + T1F = FMA(KP707106781, T1i, T1h); + T1G = TF - TC; + T1H = FNMS(KP923879532, T1G, T1F); + T1J = FMA(KP923879532, T1G, T1F); + } + Cr[WS(csr, 13)] = FNMS(KP831469612, T1E, T1x); + Ci[WS(csi, 13)] = FMS(KP831469612, T1M, T1J); + Cr[WS(csr, 3)] = FMA(KP831469612, T1E, T1x); + Ci[WS(csi, 3)] = FMA(KP831469612, T1M, T1J); + Ci[WS(csi, 5)] = FMS(KP831469612, T1I, T1H); + Cr[WS(csr, 5)] = FNMS(KP831469612, T1O, T1N); + Ci[WS(csi, 11)] = FMA(KP831469612, T1I, T1H); + Cr[WS(csr, 11)] = FMA(KP831469612, T1O, T1N); + } + } + } +} + +static const kr2c_desc desc = { 32, "r2cf_32", {88, 0, 68, 0}, &GENUS }; + +void X(codelet_r2cf_32) (planner *p) { + X(kr2c_register) (p, r2cf_32, &desc); +} + +#else + +/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 32 -name r2cf_32 -include rdft/scalar/r2cf.h */ + +/* + * This function contains 156 FP additions, 42 FP multiplications, + * (or, 140 additions, 26 multiplications, 16 fused multiply/add), + * 54 stack variables, 7 constants, and 64 memory accesses + */ +#include "rdft/scalar/r2cf.h" + +static void r2cf_32(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP555570233, +0.555570233019602224742830813948532874374937191); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP195090322, +0.195090322016128267848284868477022240927691618); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(128, rs), MAKE_VOLATILE_STRIDE(128, csr), MAKE_VOLATILE_STRIDE(128, csi)) { + E T7, T2b, Tv, T1l, Te, T2o, Ty, T1k, Tt, T2d, TF, T1h, Tm, T2c, TC; + E T1i, T1Z, T22, T2k, T2j, T1e, T1C, T19, T1B, T1S, T1V, T2h, T2g, TX, T1z; + E TS, T1y; + { + E T1, T2, T3, T4, T5, T6; + T1 = R0[0]; + T2 = R0[WS(rs, 8)]; + T3 = T1 + T2; + T4 = R0[WS(rs, 4)]; + T5 = R0[WS(rs, 12)]; + T6 = T4 + T5; + T7 = T3 + T6; + T2b = T3 - T6; + Tv = T1 - T2; + T1l = T4 - T5; + } + { + E Ta, Tw, Td, Tx; + { + E T8, T9, Tb, Tc; + T8 = R0[WS(rs, 2)]; + T9 = R0[WS(rs, 10)]; + Ta = T8 + T9; + Tw = T8 - T9; + Tb = R0[WS(rs, 14)]; + Tc = R0[WS(rs, 6)]; + Td = Tb + Tc; + Tx = Tb - Tc; + } + Te = Ta + Td; + T2o = Td - Ta; + Ty = KP707106781 * (Tw + Tx); + T1k = KP707106781 * (Tx - Tw); + } + { + E Tp, TD, Ts, TE; + { + E Tn, To, Tq, Tr; + Tn = R0[WS(rs, 15)]; + To = R0[WS(rs, 7)]; + Tp = Tn + To; + TD = Tn - To; + Tq = R0[WS(rs, 3)]; + Tr = R0[WS(rs, 11)]; + Ts = Tq + Tr; + TE = Tq - Tr; + } + Tt = Tp + Ts; + T2d = Tp - Ts; + TF = FMA(KP923879532, TD, KP382683432 * TE); + T1h = FNMS(KP923879532, TE, KP382683432 * TD); + } + { + E Ti, TA, Tl, TB; + { + E Tg, Th, Tj, Tk; + Tg = R0[WS(rs, 1)]; + Th = R0[WS(rs, 9)]; + Ti = Tg + Th; + TA = Tg - Th; + Tj = R0[WS(rs, 5)]; + Tk = R0[WS(rs, 13)]; + Tl = Tj + Tk; + TB = Tj - Tk; + } + Tm = Ti + Tl; + T2c = Ti - Tl; + TC = FNMS(KP382683432, TB, KP923879532 * TA); + T1i = FMA(KP382683432, TA, KP923879532 * TB); + } + { + E T11, T1X, T1d, T1Y, T14, T20, T17, T21, T1a, T18; + { + E TZ, T10, T1b, T1c; + TZ = R1[WS(rs, 15)]; + T10 = R1[WS(rs, 7)]; + T11 = TZ - T10; + T1X = TZ + T10; + T1b = R1[WS(rs, 3)]; + T1c = R1[WS(rs, 11)]; + T1d = T1b - T1c; + T1Y = T1b + T1c; + } + { + E T12, T13, T15, T16; + T12 = R1[WS(rs, 1)]; + T13 = R1[WS(rs, 9)]; + T14 = T12 - T13; + T20 = T12 + T13; + T15 = R1[WS(rs, 13)]; + T16 = R1[WS(rs, 5)]; + T17 = T15 - T16; + T21 = T15 + T16; + } + T1Z = T1X + T1Y; + T22 = T20 + T21; + T2k = T21 - T20; + T2j = T1X - T1Y; + T1a = KP707106781 * (T17 - T14); + T1e = T1a - T1d; + T1C = T1d + T1a; + T18 = KP707106781 * (T14 + T17); + T19 = T11 + T18; + T1B = T11 - T18; + } + { + E TK, T1Q, TW, T1R, TN, T1T, TQ, T1U, TT, TR; + { + E TI, TJ, TU, TV; + TI = R1[0]; + TJ = R1[WS(rs, 8)]; + TK = TI - TJ; + T1Q = TI + TJ; + TU = R1[WS(rs, 4)]; + TV = R1[WS(rs, 12)]; + TW = TU - TV; + T1R = TU + TV; + } + { + E TL, TM, TO, TP; + TL = R1[WS(rs, 2)]; + TM = R1[WS(rs, 10)]; + TN = TL - TM; + T1T = TL + TM; + TO = R1[WS(rs, 14)]; + TP = R1[WS(rs, 6)]; + TQ = TO - TP; + T1U = TO + TP; + } + T1S = T1Q + T1R; + T1V = T1T + T1U; + T2h = T1U - T1T; + T2g = T1Q - T1R; + TT = KP707106781 * (TQ - TN); + TX = TT - TW; + T1z = TW + TT; + TR = KP707106781 * (TN + TQ); + TS = TK + TR; + T1y = TK - TR; + } + { + E Tf, Tu, T27, T28, T29, T2a; + Tf = T7 + Te; + Tu = Tm + Tt; + T27 = Tf + Tu; + T28 = T1S + T1V; + T29 = T1Z + T22; + T2a = T28 + T29; + Cr[WS(csr, 8)] = Tf - Tu; + Ci[WS(csi, 8)] = T29 - T28; + Cr[WS(csr, 16)] = T27 - T2a; + Cr[0] = T27 + T2a; + } + { + E T1P, T25, T24, T26, T1W, T23; + T1P = T7 - Te; + T25 = Tt - Tm; + T1W = T1S - T1V; + T23 = T1Z - T22; + T24 = KP707106781 * (T1W + T23); + T26 = KP707106781 * (T23 - T1W); + Cr[WS(csr, 12)] = T1P - T24; + Ci[WS(csi, 12)] = T26 - T25; + Cr[WS(csr, 4)] = T1P + T24; + Ci[WS(csi, 4)] = T25 + T26; + } + { + E T2f, T2v, T2p, T2r, T2m, T2q, T2u, T2w, T2e, T2n; + T2e = KP707106781 * (T2c + T2d); + T2f = T2b + T2e; + T2v = T2b - T2e; + T2n = KP707106781 * (T2d - T2c); + T2p = T2n - T2o; + T2r = T2o + T2n; + { + E T2i, T2l, T2s, T2t; + T2i = FMA(KP923879532, T2g, KP382683432 * T2h); + T2l = FNMS(KP382683432, T2k, KP923879532 * T2j); + T2m = T2i + T2l; + T2q = T2l - T2i; + T2s = FNMS(KP382683432, T2g, KP923879532 * T2h); + T2t = FMA(KP382683432, T2j, KP923879532 * T2k); + T2u = T2s + T2t; + T2w = T2t - T2s; + } + Cr[WS(csr, 14)] = T2f - T2m; + Ci[WS(csi, 14)] = T2u - T2r; + Cr[WS(csr, 2)] = T2f + T2m; + Ci[WS(csi, 2)] = T2r + T2u; + Ci[WS(csi, 6)] = T2p + T2q; + Cr[WS(csr, 6)] = T2v + T2w; + Ci[WS(csi, 10)] = T2q - T2p; + Cr[WS(csr, 10)] = T2v - T2w; + } + { + E TH, T1t, T1s, T1u, T1g, T1o, T1n, T1p; + { + E Tz, TG, T1q, T1r; + Tz = Tv + Ty; + TG = TC + TF; + TH = Tz + TG; + T1t = Tz - TG; + T1q = FNMS(KP195090322, TS, KP980785280 * TX); + T1r = FMA(KP195090322, T19, KP980785280 * T1e); + T1s = T1q + T1r; + T1u = T1r - T1q; + } + { + E TY, T1f, T1j, T1m; + TY = FMA(KP980785280, TS, KP195090322 * TX); + T1f = FNMS(KP195090322, T1e, KP980785280 * T19); + T1g = TY + T1f; + T1o = T1f - TY; + T1j = T1h - T1i; + T1m = T1k - T1l; + T1n = T1j - T1m; + T1p = T1m + T1j; + } + Cr[WS(csr, 15)] = TH - T1g; + Ci[WS(csi, 15)] = T1s - T1p; + Cr[WS(csr, 1)] = TH + T1g; + Ci[WS(csi, 1)] = T1p + T1s; + Ci[WS(csi, 7)] = T1n + T1o; + Cr[WS(csr, 7)] = T1t + T1u; + Ci[WS(csi, 9)] = T1o - T1n; + Cr[WS(csr, 9)] = T1t - T1u; + } + { + E T1x, T1N, T1M, T1O, T1E, T1I, T1H, T1J; + { + E T1v, T1w, T1K, T1L; + T1v = Tv - Ty; + T1w = T1i + T1h; + T1x = T1v + T1w; + T1N = T1v - T1w; + T1K = FNMS(KP555570233, T1y, KP831469612 * T1z); + T1L = FMA(KP555570233, T1B, KP831469612 * T1C); + T1M = T1K + T1L; + T1O = T1L - T1K; + } + { + E T1A, T1D, T1F, T1G; + T1A = FMA(KP831469612, T1y, KP555570233 * T1z); + T1D = FNMS(KP555570233, T1C, KP831469612 * T1B); + T1E = T1A + T1D; + T1I = T1D - T1A; + T1F = TF - TC; + T1G = T1l + T1k; + T1H = T1F - T1G; + T1J = T1G + T1F; + } + Cr[WS(csr, 13)] = T1x - T1E; + Ci[WS(csi, 13)] = T1M - T1J; + Cr[WS(csr, 3)] = T1x + T1E; + Ci[WS(csi, 3)] = T1J + T1M; + Ci[WS(csi, 5)] = T1H + T1I; + Cr[WS(csr, 5)] = T1N + T1O; + Ci[WS(csi, 11)] = T1I - T1H; + Cr[WS(csr, 11)] = T1N - T1O; + } + } + } +} + +static const kr2c_desc desc = { 32, "r2cf_32", {140, 26, 16, 0}, &GENUS }; + +void X(codelet_r2cf_32) (planner *p) { + X(kr2c_register) (p, r2cf_32, &desc); +} + +#endif