diff src/fftw-3.3.8/rdft/scalar/r2cf/r2cfII_15.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.8/rdft/scalar/r2cf/r2cfII_15.c	Tue Nov 19 14:52:55 2019 +0000
@@ -0,0 +1,299 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Thu May 24 08:06:43 EDT 2018 */
+
+#include "rdft/codelet-rdft.h"
+
+#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
+
+/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cfII_15 -dft-II -include rdft/scalar/r2cfII.h */
+
+/*
+ * This function contains 72 FP additions, 41 FP multiplications,
+ * (or, 38 additions, 7 multiplications, 34 fused multiply/add),
+ * 42 stack variables, 12 constants, and 30 memory accesses
+ */
+#include "rdft/scalar/r2cfII.h"
+
+static void r2cfII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP823639103, +0.823639103546331925877420039278190003029660514);
+     DK(KP910592997, +0.910592997310029334643087372129977886038870291);
+     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
+     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
+     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DK(KP690983005, +0.690983005625052575897706582817180941139845410);
+     DK(KP447213595, +0.447213595499957939281834733746255247088123672);
+     DK(KP552786404, +0.552786404500042060718165266253744752911876328);
+     DK(KP809016994, +0.809016994374947424102293417182819058860154590);
+     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
+     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
+	       E Ta, Tl, T1, T6, T7, TX, TT, T8, Tg, Th, TM, TZ, Tj, Tz, Tr;
+	       E Ts, TP, TY, Tu, TC;
+	       Ta = R0[WS(rs, 5)];
+	       Tl = R1[WS(rs, 2)];
+	       {
+		    E T2, T5, T3, T4, TR, TS;
+		    T1 = R0[0];
+		    T2 = R0[WS(rs, 3)];
+		    T5 = R1[WS(rs, 4)];
+		    T3 = R0[WS(rs, 6)];
+		    T4 = R1[WS(rs, 1)];
+		    TR = T2 + T5;
+		    TS = T3 + T4;
+		    T6 = T2 + T3 - T4 - T5;
+		    T7 = FNMS(KP250000000, T6, T1);
+		    TX = FNMS(KP618033988, TR, TS);
+		    TT = FMA(KP618033988, TS, TR);
+		    T8 = (T3 + T5 - T2) - T4;
+	       }
+	       {
+		    E Tf, TL, TK, Ti, Ty;
+		    {
+			 E Tb, Tc, Td, Te;
+			 Tb = R1[0];
+			 Tg = R0[WS(rs, 2)];
+			 Tc = R1[WS(rs, 3)];
+			 Td = R1[WS(rs, 6)];
+			 Te = Tc + Td;
+			 Tf = Tb - Te;
+			 TL = Tc - Td;
+			 Th = Tb + Te;
+			 TK = Tg + Tb;
+		    }
+		    TM = FMA(KP618033988, TL, TK);
+		    TZ = FNMS(KP618033988, TK, TL);
+		    Ti = FMA(KP809016994, Th, Tg);
+		    Tj = FNMS(KP552786404, Ti, Tf);
+		    Ty = FMA(KP447213595, Th, Tf);
+		    Tz = FNMS(KP690983005, Ty, Tg);
+	       }
+	       {
+		    E Tq, TO, TN, Tt, TB;
+		    {
+			 E Tm, Tn, To, Tp;
+			 Tm = R0[WS(rs, 7)];
+			 Tr = R1[WS(rs, 5)];
+			 Tn = R0[WS(rs, 1)];
+			 To = R0[WS(rs, 4)];
+			 Tp = Tn + To;
+			 Tq = Tm - Tp;
+			 TO = To - Tn;
+			 Ts = Tm + Tp;
+			 TN = Tr + Tm;
+		    }
+		    TP = FMA(KP618033988, TO, TN);
+		    TY = FNMS(KP618033988, TN, TO);
+		    Tt = FMA(KP809016994, Ts, Tr);
+		    Tu = FNMS(KP552786404, Tt, Tq);
+		    TB = FMA(KP447213595, Ts, Tq);
+		    TC = FNMS(KP690983005, TB, Tr);
+	       }
+	       {
+		    E TF, TG, TH, TI;
+		    TF = T1 + T6;
+		    TG = Ts - Tr - Tl;
+		    TH = Ta + Tg - Th;
+		    TI = TG + TH;
+		    Cr[WS(csr, 2)] = FNMS(KP500000000, TI, TF);
+		    Ci[WS(csi, 2)] = KP866025403 * (TH - TG);
+		    Cr[WS(csr, 7)] = TF + TI;
+	       }
+	       {
+		    E Tx, T14, T10, T11, TE, T12, TA, TD, T13;
+		    Tx = FMA(KP559016994, T8, T7);
+		    T14 = TZ - TY;
+		    T10 = TY + TZ;
+		    T11 = FMA(KP500000000, T10, TX);
+		    TA = FNMS(KP809016994, Tz, Ta);
+		    TD = FNMS(KP809016994, TC, Tl);
+		    TE = TA - TD;
+		    T12 = TD + TA;
+		    Cr[WS(csr, 1)] = Tx + TE;
+		    Ci[WS(csi, 1)] = KP951056516 * (T10 - TX);
+		    Ci[WS(csi, 3)] = KP951056516 * (FNMS(KP910592997, T12, T11));
+		    Ci[WS(csi, 6)] = -(KP951056516 * (FMA(KP910592997, T12, T11)));
+		    T13 = FNMS(KP500000000, TE, Tx);
+		    Cr[WS(csr, 3)] = FNMS(KP823639103, T14, T13);
+		    Cr[WS(csr, 6)] = FMA(KP823639103, T14, T13);
+	       }
+	       {
+		    E T9, TQ, TU, TV, Tw, TW, Tk, Tv, TJ;
+		    T9 = FNMS(KP559016994, T8, T7);
+		    TQ = TM - TP;
+		    TU = TP + TM;
+		    TV = FMA(KP500000000, TU, TT);
+		    Tk = FNMS(KP559016994, Tj, Ta);
+		    Tv = FNMS(KP559016994, Tu, Tl);
+		    Tw = Tk - Tv;
+		    TW = Tv + Tk;
+		    Cr[WS(csr, 4)] = T9 + Tw;
+		    Ci[WS(csi, 4)] = KP951056516 * (TT - TU);
+		    Ci[0] = -(KP951056516 * (FMA(KP910592997, TW, TV)));
+		    Ci[WS(csi, 5)] = -(KP951056516 * (FNMS(KP910592997, TW, TV)));
+		    TJ = FNMS(KP500000000, Tw, T9);
+		    Cr[WS(csr, 5)] = FNMS(KP823639103, TQ, TJ);
+		    Cr[0] = FMA(KP823639103, TQ, TJ);
+	       }
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 15, "r2cfII_15", {38, 7, 34, 0}, &GENUS };
+
+void X(codelet_r2cfII_15) (planner *p) {
+     X(kr2c_register) (p, r2cfII_15, &desc);
+}
+
+#else
+
+/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cfII_15 -dft-II -include rdft/scalar/r2cfII.h */
+
+/*
+ * This function contains 72 FP additions, 33 FP multiplications,
+ * (or, 54 additions, 15 multiplications, 18 fused multiply/add),
+ * 37 stack variables, 8 constants, and 30 memory accesses
+ */
+#include "rdft/scalar/r2cfII.h"
+
+static void r2cfII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
+     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
+     DK(KP809016994, +0.809016994374947424102293417182819058860154590);
+     DK(KP309016994, +0.309016994374947424102293417182819058860154590);
+     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
+     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
+     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
+     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
+	       E T1, T2, Tx, TR, TE, T7, TD, Th, Tm, Tr, TQ, TA, TB, Tf, Te;
+	       E Tu, TS, Td, TH, TO;
+	       T1 = R0[WS(rs, 5)];
+	       {
+		    E T3, Tv, T6, Tw, T4, T5;
+		    T2 = R0[WS(rs, 2)];
+		    T3 = R1[0];
+		    Tv = T2 + T3;
+		    T4 = R1[WS(rs, 3)];
+		    T5 = R1[WS(rs, 6)];
+		    T6 = T4 + T5;
+		    Tw = T4 - T5;
+		    Tx = FMA(KP951056516, Tv, KP587785252 * Tw);
+		    TR = FNMS(KP587785252, Tv, KP951056516 * Tw);
+		    TE = KP559016994 * (T3 - T6);
+		    T7 = T3 + T6;
+		    TD = KP250000000 * T7;
+	       }
+	       {
+		    E Ti, Tl, Tj, Tk, Tp, Tq;
+		    Th = R0[0];
+		    Ti = R1[WS(rs, 4)];
+		    Tl = R0[WS(rs, 6)];
+		    Tj = R1[WS(rs, 1)];
+		    Tk = R0[WS(rs, 3)];
+		    Tp = Tk + Ti;
+		    Tq = Tl + Tj;
+		    Tm = Ti + Tj - (Tk + Tl);
+		    Tr = FMA(KP951056516, Tp, KP587785252 * Tq);
+		    TQ = FNMS(KP951056516, Tq, KP587785252 * Tp);
+		    TA = FMA(KP250000000, Tm, Th);
+		    TB = KP559016994 * (Tl + Ti - (Tk + Tj));
+	       }
+	       {
+		    E T9, Tt, Tc, Ts, Ta, Tb, TG;
+		    Tf = R1[WS(rs, 2)];
+		    T9 = R0[WS(rs, 7)];
+		    Te = R1[WS(rs, 5)];
+		    Tt = T9 + Te;
+		    Ta = R0[WS(rs, 1)];
+		    Tb = R0[WS(rs, 4)];
+		    Tc = Ta + Tb;
+		    Ts = Ta - Tb;
+		    Tu = FNMS(KP951056516, Tt, KP587785252 * Ts);
+		    TS = FMA(KP951056516, Ts, KP587785252 * Tt);
+		    Td = T9 + Tc;
+		    TG = KP559016994 * (T9 - Tc);
+		    TH = FNMS(KP309016994, Te, TG) + FNMA(KP250000000, Td, Tf);
+		    TO = FMS(KP809016994, Te, Tf) + FNMA(KP250000000, Td, TG);
+	       }
+	       {
+		    E Tn, T8, Tg, To;
+		    Tn = Th - Tm;
+		    T8 = T1 + T2 - T7;
+		    Tg = Td - Te - Tf;
+		    To = T8 + Tg;
+		    Ci[WS(csi, 2)] = KP866025403 * (T8 - Tg);
+		    Cr[WS(csr, 2)] = FNMS(KP500000000, To, Tn);
+		    Cr[WS(csr, 7)] = Tn + To;
+	       }
+	       {
+		    E TM, TX, TT, TV, TP, TU, TN, TW;
+		    TM = TB + TA;
+		    TX = KP866025403 * (TR + TS);
+		    TT = TR - TS;
+		    TV = FMS(KP500000000, TT, TQ);
+		    TN = T1 + TE + FNMS(KP809016994, T2, TD);
+		    TP = TN + TO;
+		    TU = KP866025403 * (TO - TN);
+		    Cr[WS(csr, 1)] = TM + TP;
+		    Ci[WS(csi, 1)] = TQ + TT;
+		    Ci[WS(csi, 6)] = TU - TV;
+		    Ci[WS(csi, 3)] = TU + TV;
+		    TW = FNMS(KP500000000, TP, TM);
+		    Cr[WS(csr, 3)] = TW - TX;
+		    Cr[WS(csr, 6)] = TW + TX;
+	       }
+	       {
+		    E Tz, TC, Ty, TK, TI, TL, TF, TJ;
+		    Tz = KP866025403 * (Tx + Tu);
+		    TC = TA - TB;
+		    Ty = Tu - Tx;
+		    TK = FMS(KP500000000, Ty, Tr);
+		    TF = FMA(KP309016994, T2, T1) + TD - TE;
+		    TI = TF + TH;
+		    TL = KP866025403 * (TH - TF);
+		    Ci[WS(csi, 4)] = Tr + Ty;
+		    Cr[WS(csr, 4)] = TC + TI;
+		    Ci[WS(csi, 5)] = TK - TL;
+		    Ci[0] = TK + TL;
+		    TJ = FNMS(KP500000000, TI, TC);
+		    Cr[0] = Tz + TJ;
+		    Cr[WS(csr, 5)] = TJ - Tz;
+	       }
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 15, "r2cfII_15", {54, 15, 18, 0}, &GENUS };
+
+void X(codelet_r2cfII_15) (planner *p) {
+     X(kr2c_register) (p, r2cfII_15, &desc);
+}
+
+#endif