Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cf/r2cfII_15.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cf/r2cfII_15.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,299 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:06:43 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cfII_15 -dft-II -include rdft/scalar/r2cfII.h */ + +/* + * This function contains 72 FP additions, 41 FP multiplications, + * (or, 38 additions, 7 multiplications, 34 fused multiply/add), + * 42 stack variables, 12 constants, and 30 memory accesses + */ +#include "rdft/scalar/r2cfII.h" + +static void r2cfII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP823639103, +0.823639103546331925877420039278190003029660514); + DK(KP910592997, +0.910592997310029334643087372129977886038870291); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP690983005, +0.690983005625052575897706582817180941139845410); + DK(KP447213595, +0.447213595499957939281834733746255247088123672); + DK(KP552786404, +0.552786404500042060718165266253744752911876328); + DK(KP809016994, +0.809016994374947424102293417182819058860154590); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { + E Ta, Tl, T1, T6, T7, TX, TT, T8, Tg, Th, TM, TZ, Tj, Tz, Tr; + E Ts, TP, TY, Tu, TC; + Ta = R0[WS(rs, 5)]; + Tl = R1[WS(rs, 2)]; + { + E T2, T5, T3, T4, TR, TS; + T1 = R0[0]; + T2 = R0[WS(rs, 3)]; + T5 = R1[WS(rs, 4)]; + T3 = R0[WS(rs, 6)]; + T4 = R1[WS(rs, 1)]; + TR = T2 + T5; + TS = T3 + T4; + T6 = T2 + T3 - T4 - T5; + T7 = FNMS(KP250000000, T6, T1); + TX = FNMS(KP618033988, TR, TS); + TT = FMA(KP618033988, TS, TR); + T8 = (T3 + T5 - T2) - T4; + } + { + E Tf, TL, TK, Ti, Ty; + { + E Tb, Tc, Td, Te; + Tb = R1[0]; + Tg = R0[WS(rs, 2)]; + Tc = R1[WS(rs, 3)]; + Td = R1[WS(rs, 6)]; + Te = Tc + Td; + Tf = Tb - Te; + TL = Tc - Td; + Th = Tb + Te; + TK = Tg + Tb; + } + TM = FMA(KP618033988, TL, TK); + TZ = FNMS(KP618033988, TK, TL); + Ti = FMA(KP809016994, Th, Tg); + Tj = FNMS(KP552786404, Ti, Tf); + Ty = FMA(KP447213595, Th, Tf); + Tz = FNMS(KP690983005, Ty, Tg); + } + { + E Tq, TO, TN, Tt, TB; + { + E Tm, Tn, To, Tp; + Tm = R0[WS(rs, 7)]; + Tr = R1[WS(rs, 5)]; + Tn = R0[WS(rs, 1)]; + To = R0[WS(rs, 4)]; + Tp = Tn + To; + Tq = Tm - Tp; + TO = To - Tn; + Ts = Tm + Tp; + TN = Tr + Tm; + } + TP = FMA(KP618033988, TO, TN); + TY = FNMS(KP618033988, TN, TO); + Tt = FMA(KP809016994, Ts, Tr); + Tu = FNMS(KP552786404, Tt, Tq); + TB = FMA(KP447213595, Ts, Tq); + TC = FNMS(KP690983005, TB, Tr); + } + { + E TF, TG, TH, TI; + TF = T1 + T6; + TG = Ts - Tr - Tl; + TH = Ta + Tg - Th; + TI = TG + TH; + Cr[WS(csr, 2)] = FNMS(KP500000000, TI, TF); + Ci[WS(csi, 2)] = KP866025403 * (TH - TG); + Cr[WS(csr, 7)] = TF + TI; + } + { + E Tx, T14, T10, T11, TE, T12, TA, TD, T13; + Tx = FMA(KP559016994, T8, T7); + T14 = TZ - TY; + T10 = TY + TZ; + T11 = FMA(KP500000000, T10, TX); + TA = FNMS(KP809016994, Tz, Ta); + TD = FNMS(KP809016994, TC, Tl); + TE = TA - TD; + T12 = TD + TA; + Cr[WS(csr, 1)] = Tx + TE; + Ci[WS(csi, 1)] = KP951056516 * (T10 - TX); + Ci[WS(csi, 3)] = KP951056516 * (FNMS(KP910592997, T12, T11)); + Ci[WS(csi, 6)] = -(KP951056516 * (FMA(KP910592997, T12, T11))); + T13 = FNMS(KP500000000, TE, Tx); + Cr[WS(csr, 3)] = FNMS(KP823639103, T14, T13); + Cr[WS(csr, 6)] = FMA(KP823639103, T14, T13); + } + { + E T9, TQ, TU, TV, Tw, TW, Tk, Tv, TJ; + T9 = FNMS(KP559016994, T8, T7); + TQ = TM - TP; + TU = TP + TM; + TV = FMA(KP500000000, TU, TT); + Tk = FNMS(KP559016994, Tj, Ta); + Tv = FNMS(KP559016994, Tu, Tl); + Tw = Tk - Tv; + TW = Tv + Tk; + Cr[WS(csr, 4)] = T9 + Tw; + Ci[WS(csi, 4)] = KP951056516 * (TT - TU); + Ci[0] = -(KP951056516 * (FMA(KP910592997, TW, TV))); + Ci[WS(csi, 5)] = -(KP951056516 * (FNMS(KP910592997, TW, TV))); + TJ = FNMS(KP500000000, Tw, T9); + Cr[WS(csr, 5)] = FNMS(KP823639103, TQ, TJ); + Cr[0] = FMA(KP823639103, TQ, TJ); + } + } + } +} + +static const kr2c_desc desc = { 15, "r2cfII_15", {38, 7, 34, 0}, &GENUS }; + +void X(codelet_r2cfII_15) (planner *p) { + X(kr2c_register) (p, r2cfII_15, &desc); +} + +#else + +/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cfII_15 -dft-II -include rdft/scalar/r2cfII.h */ + +/* + * This function contains 72 FP additions, 33 FP multiplications, + * (or, 54 additions, 15 multiplications, 18 fused multiply/add), + * 37 stack variables, 8 constants, and 30 memory accesses + */ +#include "rdft/scalar/r2cfII.h" + +static void r2cfII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP809016994, +0.809016994374947424102293417182819058860154590); + DK(KP309016994, +0.309016994374947424102293417182819058860154590); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { + E T1, T2, Tx, TR, TE, T7, TD, Th, Tm, Tr, TQ, TA, TB, Tf, Te; + E Tu, TS, Td, TH, TO; + T1 = R0[WS(rs, 5)]; + { + E T3, Tv, T6, Tw, T4, T5; + T2 = R0[WS(rs, 2)]; + T3 = R1[0]; + Tv = T2 + T3; + T4 = R1[WS(rs, 3)]; + T5 = R1[WS(rs, 6)]; + T6 = T4 + T5; + Tw = T4 - T5; + Tx = FMA(KP951056516, Tv, KP587785252 * Tw); + TR = FNMS(KP587785252, Tv, KP951056516 * Tw); + TE = KP559016994 * (T3 - T6); + T7 = T3 + T6; + TD = KP250000000 * T7; + } + { + E Ti, Tl, Tj, Tk, Tp, Tq; + Th = R0[0]; + Ti = R1[WS(rs, 4)]; + Tl = R0[WS(rs, 6)]; + Tj = R1[WS(rs, 1)]; + Tk = R0[WS(rs, 3)]; + Tp = Tk + Ti; + Tq = Tl + Tj; + Tm = Ti + Tj - (Tk + Tl); + Tr = FMA(KP951056516, Tp, KP587785252 * Tq); + TQ = FNMS(KP951056516, Tq, KP587785252 * Tp); + TA = FMA(KP250000000, Tm, Th); + TB = KP559016994 * (Tl + Ti - (Tk + Tj)); + } + { + E T9, Tt, Tc, Ts, Ta, Tb, TG; + Tf = R1[WS(rs, 2)]; + T9 = R0[WS(rs, 7)]; + Te = R1[WS(rs, 5)]; + Tt = T9 + Te; + Ta = R0[WS(rs, 1)]; + Tb = R0[WS(rs, 4)]; + Tc = Ta + Tb; + Ts = Ta - Tb; + Tu = FNMS(KP951056516, Tt, KP587785252 * Ts); + TS = FMA(KP951056516, Ts, KP587785252 * Tt); + Td = T9 + Tc; + TG = KP559016994 * (T9 - Tc); + TH = FNMS(KP309016994, Te, TG) + FNMA(KP250000000, Td, Tf); + TO = FMS(KP809016994, Te, Tf) + FNMA(KP250000000, Td, TG); + } + { + E Tn, T8, Tg, To; + Tn = Th - Tm; + T8 = T1 + T2 - T7; + Tg = Td - Te - Tf; + To = T8 + Tg; + Ci[WS(csi, 2)] = KP866025403 * (T8 - Tg); + Cr[WS(csr, 2)] = FNMS(KP500000000, To, Tn); + Cr[WS(csr, 7)] = Tn + To; + } + { + E TM, TX, TT, TV, TP, TU, TN, TW; + TM = TB + TA; + TX = KP866025403 * (TR + TS); + TT = TR - TS; + TV = FMS(KP500000000, TT, TQ); + TN = T1 + TE + FNMS(KP809016994, T2, TD); + TP = TN + TO; + TU = KP866025403 * (TO - TN); + Cr[WS(csr, 1)] = TM + TP; + Ci[WS(csi, 1)] = TQ + TT; + Ci[WS(csi, 6)] = TU - TV; + Ci[WS(csi, 3)] = TU + TV; + TW = FNMS(KP500000000, TP, TM); + Cr[WS(csr, 3)] = TW - TX; + Cr[WS(csr, 6)] = TW + TX; + } + { + E Tz, TC, Ty, TK, TI, TL, TF, TJ; + Tz = KP866025403 * (Tx + Tu); + TC = TA - TB; + Ty = Tu - Tx; + TK = FMS(KP500000000, Ty, Tr); + TF = FMA(KP309016994, T2, T1) + TD - TE; + TI = TF + TH; + TL = KP866025403 * (TH - TF); + Ci[WS(csi, 4)] = Tr + Ty; + Cr[WS(csr, 4)] = TC + TI; + Ci[WS(csi, 5)] = TK - TL; + Ci[0] = TK + TL; + TJ = FNMS(KP500000000, TI, TC); + Cr[0] = Tz + TJ; + Cr[WS(csr, 5)] = TJ - Tz; + } + } + } +} + +static const kr2c_desc desc = { 15, "r2cfII_15", {54, 15, 18, 0}, &GENUS }; + +void X(codelet_r2cfII_15) (planner *p) { + X(kr2c_register) (p, r2cfII_15, &desc); +} + +#endif