Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cf/hf_64.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cf/hf_64.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,4105 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:06:31 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -dit -name hf_64 -include rdft/scalar/hf.h */ + +/* + * This function contains 1038 FP additions, 644 FP multiplications, + * (or, 520 additions, 126 multiplications, 518 fused multiply/add), + * 190 stack variables, 15 constants, and 256 memory accesses + */ +#include "rdft/scalar/hf.h" + +static void hf_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP881921264, +0.881921264348355029712756863660388349508442621); + DK(KP956940335, +0.956940335732208864935797886980269969482849206); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP773010453, +0.773010453362736960810906609758469800971041293); + DK(KP995184726, +0.995184726672196886244836953109479921575474869); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP668178637, +0.668178637919298919997757686523080761552472251); + DK(KP303346683, +0.303346683607342391675883946941299872384187453); + DK(KP534511135, +0.534511135950791641089685961295362908582039528); + DK(KP820678790, +0.820678790828660330972281985331011598767386482); + DK(KP098491403, +0.098491403357164253077197521291327432293052451); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP198912367, +0.198912367379658006911597622644676228597850501); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + DK(KP414213562, +0.414213562373095048801688724209698078569671875); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { + E Tm, TeM, TjR, Tkl, T7e, TcA, TiV, Tjm, T1G, TeW, TeZ, Thr, T7Q, TcI, T7X; + E TcJ, T29, Tf8, Tf5, Thw, T87, TcN, T8u, TcQ, T5K, TfS, Tgc, ThX, Taq, Tdm; + E Tbj, Tdx, TN, Tjl, TeP, TiP, T7l, TcB, T7s, TcC, T1f, TeR, TeU, Ths, T7B; + E TcF, T7I, TcG, T32, Tfj, Tfg, ThB, T8G, TcU, T93, TcX, T3X, Tfr, TfK, ThM; + E T9h, Td3, Taa, Tde, T2A, Tf6, Tfb, Thx, T8m, TcR, T8x, TcO, T3t, Tfh, Tfm; + E ThC, T8V, TcY, T96, TcV, T4o, TfL, Tfu, ThN, T9w, Tdf, Tad, Td4, T6b, Tg9; + E TfV, ThY, TaF, Tdy, Tbm, Tdn, T4Q, ThJ, TfA, TfN, T9M, Tdh, Taf, Td8, T5h; + E ThI, TfF, TfO, Ta1, Tdi, Tag, Tdb, T6D, ThU, Tg1, Tgf, TaV, TdA, Tbo, Tdr; + E T74, ThT, Tg6, Tge, Tba, TdB, Tbp, Tdu; + { + E T1, TiT, T7, TiS, Te, T7a, Tk, T7c; + T1 = cr[0]; + TiT = ci[0]; + { + E T3, T6, T4, TiR, T2, T5; + T3 = cr[WS(rs, 32)]; + T6 = ci[WS(rs, 32)]; + T2 = W[62]; + T4 = T2 * T3; + TiR = T2 * T6; + T5 = W[63]; + T7 = FMA(T5, T6, T4); + TiS = FNMS(T5, T3, TiR); + } + { + E Ta, Td, Tb, T79, T9, Tc; + Ta = cr[WS(rs, 16)]; + Td = ci[WS(rs, 16)]; + T9 = W[30]; + Tb = T9 * Ta; + T79 = T9 * Td; + Tc = W[31]; + Te = FMA(Tc, Td, Tb); + T7a = FNMS(Tc, Ta, T79); + } + { + E Tg, Tj, Th, T7b, Tf, Ti; + Tg = cr[WS(rs, 48)]; + Tj = ci[WS(rs, 48)]; + Tf = W[94]; + Th = Tf * Tg; + T7b = Tf * Tj; + Ti = W[95]; + Tk = FMA(Ti, Tj, Th); + T7c = FNMS(Ti, Tg, T7b); + } + { + E T8, Tl, TjP, TjQ; + T8 = T1 + T7; + Tl = Te + Tk; + Tm = T8 + Tl; + TeM = T8 - Tl; + TjP = Te - Tk; + TjQ = TiT - TiS; + TjR = TjP + TjQ; + Tkl = TjQ - TjP; + } + { + E T78, T7d, TiQ, TiU; + T78 = T1 - T7; + T7d = T7a - T7c; + T7e = T78 - T7d; + TcA = T78 + T7d; + TiQ = T7a + T7c; + TiU = TiS + TiT; + TiV = TiQ + TiU; + Tjm = TiU - TiQ; + } + } + { + E T1l, T7S, T1E, T7O, T1r, T7U, T1y, T7M; + { + E T1h, T1k, T1i, T7R, T1g, T1j; + T1h = cr[WS(rs, 60)]; + T1k = ci[WS(rs, 60)]; + T1g = W[118]; + T1i = T1g * T1h; + T7R = T1g * T1k; + T1j = W[119]; + T1l = FMA(T1j, T1k, T1i); + T7S = FNMS(T1j, T1h, T7R); + } + { + E T1A, T1D, T1B, T7N, T1z, T1C; + T1A = cr[WS(rs, 44)]; + T1D = ci[WS(rs, 44)]; + T1z = W[86]; + T1B = T1z * T1A; + T7N = T1z * T1D; + T1C = W[87]; + T1E = FMA(T1C, T1D, T1B); + T7O = FNMS(T1C, T1A, T7N); + } + { + E T1n, T1q, T1o, T7T, T1m, T1p; + T1n = cr[WS(rs, 28)]; + T1q = ci[WS(rs, 28)]; + T1m = W[54]; + T1o = T1m * T1n; + T7T = T1m * T1q; + T1p = W[55]; + T1r = FMA(T1p, T1q, T1o); + T7U = FNMS(T1p, T1n, T7T); + } + { + E T1u, T1x, T1v, T7L, T1t, T1w; + T1u = cr[WS(rs, 12)]; + T1x = ci[WS(rs, 12)]; + T1t = W[22]; + T1v = T1t * T1u; + T7L = T1t * T1x; + T1w = W[23]; + T1y = FMA(T1w, T1x, T1v); + T7M = FNMS(T1w, T1u, T7L); + } + { + E T1s, T1F, TeX, TeY; + T1s = T1l + T1r; + T1F = T1y + T1E; + T1G = T1s + T1F; + TeW = T1s - T1F; + TeX = T7S + T7U; + TeY = T7M + T7O; + TeZ = TeX - TeY; + Thr = TeX + TeY; + } + { + E T7K, T7P, T7V, T7W; + T7K = T1l - T1r; + T7P = T7M - T7O; + T7Q = T7K - T7P; + TcI = T7K + T7P; + T7V = T7S - T7U; + T7W = T1y - T1E; + T7X = T7V + T7W; + TcJ = T7V - T7W; + } + } + { + E T1O, T8p, T27, T85, T1U, T8r, T21, T83; + { + E T1K, T1N, T1L, T8o, T1J, T1M; + T1K = cr[WS(rs, 2)]; + T1N = ci[WS(rs, 2)]; + T1J = W[2]; + T1L = T1J * T1K; + T8o = T1J * T1N; + T1M = W[3]; + T1O = FMA(T1M, T1N, T1L); + T8p = FNMS(T1M, T1K, T8o); + } + { + E T23, T26, T24, T84, T22, T25; + T23 = cr[WS(rs, 50)]; + T26 = ci[WS(rs, 50)]; + T22 = W[98]; + T24 = T22 * T23; + T84 = T22 * T26; + T25 = W[99]; + T27 = FMA(T25, T26, T24); + T85 = FNMS(T25, T23, T84); + } + { + E T1Q, T1T, T1R, T8q, T1P, T1S; + T1Q = cr[WS(rs, 34)]; + T1T = ci[WS(rs, 34)]; + T1P = W[66]; + T1R = T1P * T1Q; + T8q = T1P * T1T; + T1S = W[67]; + T1U = FMA(T1S, T1T, T1R); + T8r = FNMS(T1S, T1Q, T8q); + } + { + E T1X, T20, T1Y, T82, T1W, T1Z; + T1X = cr[WS(rs, 18)]; + T20 = ci[WS(rs, 18)]; + T1W = W[34]; + T1Y = T1W * T1X; + T82 = T1W * T20; + T1Z = W[35]; + T21 = FMA(T1Z, T20, T1Y); + T83 = FNMS(T1Z, T1X, T82); + } + { + E T1V, T28, Tf3, Tf4; + T1V = T1O + T1U; + T28 = T21 + T27; + T29 = T1V + T28; + Tf8 = T1V - T28; + Tf3 = T8p + T8r; + Tf4 = T83 + T85; + Tf5 = Tf3 - Tf4; + Thw = Tf3 + Tf4; + } + { + E T81, T86, T8s, T8t; + T81 = T1O - T1U; + T86 = T83 - T85; + T87 = T81 - T86; + TcN = T81 + T86; + T8s = T8p - T8r; + T8t = T21 - T27; + T8u = T8s + T8t; + TcQ = T8s - T8t; + } + } + { + E T5p, Tbf, T5I, Tao, T5v, Tbh, T5C, Tam; + { + E T5l, T5o, T5m, Tbe, T5k, T5n; + T5l = cr[WS(rs, 63)]; + T5o = ci[WS(rs, 63)]; + T5k = W[124]; + T5m = T5k * T5l; + Tbe = T5k * T5o; + T5n = W[125]; + T5p = FMA(T5n, T5o, T5m); + Tbf = FNMS(T5n, T5l, Tbe); + } + { + E T5E, T5H, T5F, Tan, T5D, T5G; + T5E = cr[WS(rs, 47)]; + T5H = ci[WS(rs, 47)]; + T5D = W[92]; + T5F = T5D * T5E; + Tan = T5D * T5H; + T5G = W[93]; + T5I = FMA(T5G, T5H, T5F); + Tao = FNMS(T5G, T5E, Tan); + } + { + E T5r, T5u, T5s, Tbg, T5q, T5t; + T5r = cr[WS(rs, 31)]; + T5u = ci[WS(rs, 31)]; + T5q = W[60]; + T5s = T5q * T5r; + Tbg = T5q * T5u; + T5t = W[61]; + T5v = FMA(T5t, T5u, T5s); + Tbh = FNMS(T5t, T5r, Tbg); + } + { + E T5y, T5B, T5z, Tal, T5x, T5A; + T5y = cr[WS(rs, 15)]; + T5B = ci[WS(rs, 15)]; + T5x = W[28]; + T5z = T5x * T5y; + Tal = T5x * T5B; + T5A = W[29]; + T5C = FMA(T5A, T5B, T5z); + Tam = FNMS(T5A, T5y, Tal); + } + { + E T5w, T5J, Tga, Tgb; + T5w = T5p + T5v; + T5J = T5C + T5I; + T5K = T5w + T5J; + TfS = T5w - T5J; + Tga = Tbf + Tbh; + Tgb = Tam + Tao; + Tgc = Tga - Tgb; + ThX = Tga + Tgb; + } + { + E Tak, Tap, Tbd, Tbi; + Tak = T5p - T5v; + Tap = Tam - Tao; + Taq = Tak - Tap; + Tdm = Tak + Tap; + Tbd = T5I - T5C; + Tbi = Tbf - Tbh; + Tbj = Tbd - Tbi; + Tdx = Tbi + Tbd; + } + } + { + E Ts, T7h, TL, T7q, Ty, T7j, TF, T7o; + { + E To, Tr, Tp, T7g, Tn, Tq; + To = cr[WS(rs, 8)]; + Tr = ci[WS(rs, 8)]; + Tn = W[14]; + Tp = Tn * To; + T7g = Tn * Tr; + Tq = W[15]; + Ts = FMA(Tq, Tr, Tp); + T7h = FNMS(Tq, To, T7g); + } + { + E TH, TK, TI, T7p, TG, TJ; + TH = cr[WS(rs, 24)]; + TK = ci[WS(rs, 24)]; + TG = W[46]; + TI = TG * TH; + T7p = TG * TK; + TJ = W[47]; + TL = FMA(TJ, TK, TI); + T7q = FNMS(TJ, TH, T7p); + } + { + E Tu, Tx, Tv, T7i, Tt, Tw; + Tu = cr[WS(rs, 40)]; + Tx = ci[WS(rs, 40)]; + Tt = W[78]; + Tv = Tt * Tu; + T7i = Tt * Tx; + Tw = W[79]; + Ty = FMA(Tw, Tx, Tv); + T7j = FNMS(Tw, Tu, T7i); + } + { + E TB, TE, TC, T7n, TA, TD; + TB = cr[WS(rs, 56)]; + TE = ci[WS(rs, 56)]; + TA = W[110]; + TC = TA * TB; + T7n = TA * TE; + TD = W[111]; + TF = FMA(TD, TE, TC); + T7o = FNMS(TD, TB, T7n); + } + { + E Tz, TM, TeN, TeO; + Tz = Ts + Ty; + TM = TF + TL; + TN = Tz + TM; + Tjl = Tz - TM; + TeN = T7o + T7q; + TeO = T7h + T7j; + TeP = TeN - TeO; + TiP = TeO + TeN; + } + { + E T7f, T7k, T7m, T7r; + T7f = Ts - Ty; + T7k = T7h - T7j; + T7l = T7f - T7k; + TcB = T7f + T7k; + T7m = TF - TL; + T7r = T7o - T7q; + T7s = T7m + T7r; + TcC = T7m - T7r; + } + } + { + E TU, T7D, T1d, T7z, T10, T7F, T17, T7x; + { + E TQ, TT, TR, T7C, TP, TS; + TQ = cr[WS(rs, 4)]; + TT = ci[WS(rs, 4)]; + TP = W[6]; + TR = TP * TQ; + T7C = TP * TT; + TS = W[7]; + TU = FMA(TS, TT, TR); + T7D = FNMS(TS, TQ, T7C); + } + { + E T19, T1c, T1a, T7y, T18, T1b; + T19 = cr[WS(rs, 52)]; + T1c = ci[WS(rs, 52)]; + T18 = W[102]; + T1a = T18 * T19; + T7y = T18 * T1c; + T1b = W[103]; + T1d = FMA(T1b, T1c, T1a); + T7z = FNMS(T1b, T19, T7y); + } + { + E TW, TZ, TX, T7E, TV, TY; + TW = cr[WS(rs, 36)]; + TZ = ci[WS(rs, 36)]; + TV = W[70]; + TX = TV * TW; + T7E = TV * TZ; + TY = W[71]; + T10 = FMA(TY, TZ, TX); + T7F = FNMS(TY, TW, T7E); + } + { + E T13, T16, T14, T7w, T12, T15; + T13 = cr[WS(rs, 20)]; + T16 = ci[WS(rs, 20)]; + T12 = W[38]; + T14 = T12 * T13; + T7w = T12 * T16; + T15 = W[39]; + T17 = FMA(T15, T16, T14); + T7x = FNMS(T15, T13, T7w); + } + { + E T11, T1e, TeS, TeT; + T11 = TU + T10; + T1e = T17 + T1d; + T1f = T11 + T1e; + TeR = T11 - T1e; + TeS = T7D + T7F; + TeT = T7x + T7z; + TeU = TeS - TeT; + Ths = TeS + TeT; + } + { + E T7v, T7A, T7G, T7H; + T7v = TU - T10; + T7A = T7x - T7z; + T7B = T7v - T7A; + TcF = T7v + T7A; + T7G = T7D - T7F; + T7H = T17 - T1d; + T7I = T7G + T7H; + TcG = T7G - T7H; + } + } + { + E T2H, T8Y, T30, T8E, T2N, T90, T2U, T8C; + { + E T2D, T2G, T2E, T8X, T2C, T2F; + T2D = cr[WS(rs, 62)]; + T2G = ci[WS(rs, 62)]; + T2C = W[122]; + T2E = T2C * T2D; + T8X = T2C * T2G; + T2F = W[123]; + T2H = FMA(T2F, T2G, T2E); + T8Y = FNMS(T2F, T2D, T8X); + } + { + E T2W, T2Z, T2X, T8D, T2V, T2Y; + T2W = cr[WS(rs, 46)]; + T2Z = ci[WS(rs, 46)]; + T2V = W[90]; + T2X = T2V * T2W; + T8D = T2V * T2Z; + T2Y = W[91]; + T30 = FMA(T2Y, T2Z, T2X); + T8E = FNMS(T2Y, T2W, T8D); + } + { + E T2J, T2M, T2K, T8Z, T2I, T2L; + T2J = cr[WS(rs, 30)]; + T2M = ci[WS(rs, 30)]; + T2I = W[58]; + T2K = T2I * T2J; + T8Z = T2I * T2M; + T2L = W[59]; + T2N = FMA(T2L, T2M, T2K); + T90 = FNMS(T2L, T2J, T8Z); + } + { + E T2Q, T2T, T2R, T8B, T2P, T2S; + T2Q = cr[WS(rs, 14)]; + T2T = ci[WS(rs, 14)]; + T2P = W[26]; + T2R = T2P * T2Q; + T8B = T2P * T2T; + T2S = W[27]; + T2U = FMA(T2S, T2T, T2R); + T8C = FNMS(T2S, T2Q, T8B); + } + { + E T2O, T31, Tfe, Tff; + T2O = T2H + T2N; + T31 = T2U + T30; + T32 = T2O + T31; + Tfj = T2O - T31; + Tfe = T8Y + T90; + Tff = T8C + T8E; + Tfg = Tfe - Tff; + ThB = Tfe + Tff; + } + { + E T8A, T8F, T91, T92; + T8A = T2H - T2N; + T8F = T8C - T8E; + T8G = T8A - T8F; + TcU = T8A + T8F; + T91 = T8Y - T90; + T92 = T2U - T30; + T93 = T91 + T92; + TcX = T91 - T92; + } + } + { + E T3C, Ta5, T3V, T9f, T3I, Ta7, T3P, T9d; + { + E T3y, T3B, T3z, Ta4, T3x, T3A; + T3y = cr[WS(rs, 1)]; + T3B = ci[WS(rs, 1)]; + T3x = W[0]; + T3z = T3x * T3y; + Ta4 = T3x * T3B; + T3A = W[1]; + T3C = FMA(T3A, T3B, T3z); + Ta5 = FNMS(T3A, T3y, Ta4); + } + { + E T3R, T3U, T3S, T9e, T3Q, T3T; + T3R = cr[WS(rs, 49)]; + T3U = ci[WS(rs, 49)]; + T3Q = W[96]; + T3S = T3Q * T3R; + T9e = T3Q * T3U; + T3T = W[97]; + T3V = FMA(T3T, T3U, T3S); + T9f = FNMS(T3T, T3R, T9e); + } + { + E T3E, T3H, T3F, Ta6, T3D, T3G; + T3E = cr[WS(rs, 33)]; + T3H = ci[WS(rs, 33)]; + T3D = W[64]; + T3F = T3D * T3E; + Ta6 = T3D * T3H; + T3G = W[65]; + T3I = FMA(T3G, T3H, T3F); + Ta7 = FNMS(T3G, T3E, Ta6); + } + { + E T3L, T3O, T3M, T9c, T3K, T3N; + T3L = cr[WS(rs, 17)]; + T3O = ci[WS(rs, 17)]; + T3K = W[32]; + T3M = T3K * T3L; + T9c = T3K * T3O; + T3N = W[33]; + T3P = FMA(T3N, T3O, T3M); + T9d = FNMS(T3N, T3L, T9c); + } + { + E T3J, T3W, TfI, TfJ; + T3J = T3C + T3I; + T3W = T3P + T3V; + T3X = T3J + T3W; + Tfr = T3J - T3W; + TfI = Ta5 + Ta7; + TfJ = T9d + T9f; + TfK = TfI - TfJ; + ThM = TfI + TfJ; + } + { + E T9b, T9g, Ta8, Ta9; + T9b = T3C - T3I; + T9g = T9d - T9f; + T9h = T9b - T9g; + Td3 = T9b + T9g; + Ta8 = Ta5 - Ta7; + Ta9 = T3P - T3V; + Taa = Ta8 + Ta9; + Tde = Ta8 - Ta9; + } + } + { + E T2f, T8a, T2y, T8j, T2l, T8c, T2s, T8h; + { + E T2b, T2e, T2c, T89, T2a, T2d; + T2b = cr[WS(rs, 10)]; + T2e = ci[WS(rs, 10)]; + T2a = W[18]; + T2c = T2a * T2b; + T89 = T2a * T2e; + T2d = W[19]; + T2f = FMA(T2d, T2e, T2c); + T8a = FNMS(T2d, T2b, T89); + } + { + E T2u, T2x, T2v, T8i, T2t, T2w; + T2u = cr[WS(rs, 26)]; + T2x = ci[WS(rs, 26)]; + T2t = W[50]; + T2v = T2t * T2u; + T8i = T2t * T2x; + T2w = W[51]; + T2y = FMA(T2w, T2x, T2v); + T8j = FNMS(T2w, T2u, T8i); + } + { + E T2h, T2k, T2i, T8b, T2g, T2j; + T2h = cr[WS(rs, 42)]; + T2k = ci[WS(rs, 42)]; + T2g = W[82]; + T2i = T2g * T2h; + T8b = T2g * T2k; + T2j = W[83]; + T2l = FMA(T2j, T2k, T2i); + T8c = FNMS(T2j, T2h, T8b); + } + { + E T2o, T2r, T2p, T8g, T2n, T2q; + T2o = cr[WS(rs, 58)]; + T2r = ci[WS(rs, 58)]; + T2n = W[114]; + T2p = T2n * T2o; + T8g = T2n * T2r; + T2q = W[115]; + T2s = FMA(T2q, T2r, T2p); + T8h = FNMS(T2q, T2o, T8g); + } + { + E T2m, T2z, Tf9, Tfa; + T2m = T2f + T2l; + T2z = T2s + T2y; + T2A = T2m + T2z; + Tf6 = T2m - T2z; + Tf9 = T8h + T8j; + Tfa = T8a + T8c; + Tfb = Tf9 - Tfa; + Thx = Tfa + Tf9; + { + E T8e, T8v, T8l, T8w; + { + E T88, T8d, T8f, T8k; + T88 = T2f - T2l; + T8d = T8a - T8c; + T8e = T88 - T8d; + T8v = T88 + T8d; + T8f = T2s - T2y; + T8k = T8h - T8j; + T8l = T8f + T8k; + T8w = T8k - T8f; + } + T8m = T8e + T8l; + TcR = T8l - T8e; + T8x = T8v + T8w; + TcO = T8v - T8w; + } + } + } + { + E T38, T8J, T3r, T8S, T3e, T8L, T3l, T8Q; + { + E T34, T37, T35, T8I, T33, T36; + T34 = cr[WS(rs, 6)]; + T37 = ci[WS(rs, 6)]; + T33 = W[10]; + T35 = T33 * T34; + T8I = T33 * T37; + T36 = W[11]; + T38 = FMA(T36, T37, T35); + T8J = FNMS(T36, T34, T8I); + } + { + E T3n, T3q, T3o, T8R, T3m, T3p; + T3n = cr[WS(rs, 22)]; + T3q = ci[WS(rs, 22)]; + T3m = W[42]; + T3o = T3m * T3n; + T8R = T3m * T3q; + T3p = W[43]; + T3r = FMA(T3p, T3q, T3o); + T8S = FNMS(T3p, T3n, T8R); + } + { + E T3a, T3d, T3b, T8K, T39, T3c; + T3a = cr[WS(rs, 38)]; + T3d = ci[WS(rs, 38)]; + T39 = W[74]; + T3b = T39 * T3a; + T8K = T39 * T3d; + T3c = W[75]; + T3e = FMA(T3c, T3d, T3b); + T8L = FNMS(T3c, T3a, T8K); + } + { + E T3h, T3k, T3i, T8P, T3g, T3j; + T3h = cr[WS(rs, 54)]; + T3k = ci[WS(rs, 54)]; + T3g = W[106]; + T3i = T3g * T3h; + T8P = T3g * T3k; + T3j = W[107]; + T3l = FMA(T3j, T3k, T3i); + T8Q = FNMS(T3j, T3h, T8P); + } + { + E T3f, T3s, Tfk, Tfl; + T3f = T38 + T3e; + T3s = T3l + T3r; + T3t = T3f + T3s; + Tfh = T3f - T3s; + Tfk = T8Q + T8S; + Tfl = T8J + T8L; + Tfm = Tfk - Tfl; + ThC = Tfl + Tfk; + { + E T8N, T94, T8U, T95; + { + E T8H, T8M, T8O, T8T; + T8H = T38 - T3e; + T8M = T8J - T8L; + T8N = T8H - T8M; + T94 = T8H + T8M; + T8O = T3l - T3r; + T8T = T8Q - T8S; + T8U = T8O + T8T; + T95 = T8T - T8O; + } + T8V = T8N + T8U; + TcY = T8U - T8N; + T96 = T94 + T95; + TcV = T94 - T95; + } + } + } + { + E T43, T9k, T4m, T9t, T49, T9m, T4g, T9r; + { + E T3Z, T42, T40, T9j, T3Y, T41; + T3Z = cr[WS(rs, 9)]; + T42 = ci[WS(rs, 9)]; + T3Y = W[16]; + T40 = T3Y * T3Z; + T9j = T3Y * T42; + T41 = W[17]; + T43 = FMA(T41, T42, T40); + T9k = FNMS(T41, T3Z, T9j); + } + { + E T4i, T4l, T4j, T9s, T4h, T4k; + T4i = cr[WS(rs, 25)]; + T4l = ci[WS(rs, 25)]; + T4h = W[48]; + T4j = T4h * T4i; + T9s = T4h * T4l; + T4k = W[49]; + T4m = FMA(T4k, T4l, T4j); + T9t = FNMS(T4k, T4i, T9s); + } + { + E T45, T48, T46, T9l, T44, T47; + T45 = cr[WS(rs, 41)]; + T48 = ci[WS(rs, 41)]; + T44 = W[80]; + T46 = T44 * T45; + T9l = T44 * T48; + T47 = W[81]; + T49 = FMA(T47, T48, T46); + T9m = FNMS(T47, T45, T9l); + } + { + E T4c, T4f, T4d, T9q, T4b, T4e; + T4c = cr[WS(rs, 57)]; + T4f = ci[WS(rs, 57)]; + T4b = W[112]; + T4d = T4b * T4c; + T9q = T4b * T4f; + T4e = W[113]; + T4g = FMA(T4e, T4f, T4d); + T9r = FNMS(T4e, T4c, T9q); + } + { + E T4a, T4n, Tfs, Tft; + T4a = T43 + T49; + T4n = T4g + T4m; + T4o = T4a + T4n; + TfL = T4a - T4n; + Tfs = T9r + T9t; + Tft = T9k + T9m; + Tfu = Tfs - Tft; + ThN = Tft + Tfs; + { + E T9o, Tab, T9v, Tac; + { + E T9i, T9n, T9p, T9u; + T9i = T43 - T49; + T9n = T9k - T9m; + T9o = T9i - T9n; + Tab = T9i + T9n; + T9p = T4g - T4m; + T9u = T9r - T9t; + T9v = T9p + T9u; + Tac = T9u - T9p; + } + T9w = T9o + T9v; + Tdf = T9v - T9o; + Tad = Tab + Tac; + Td4 = Tab - Tac; + } + } + } + { + E T5Q, Tat, T69, TaC, T5W, Tav, T63, TaA; + { + E T5M, T5P, T5N, Tas, T5L, T5O; + T5M = cr[WS(rs, 7)]; + T5P = ci[WS(rs, 7)]; + T5L = W[12]; + T5N = T5L * T5M; + Tas = T5L * T5P; + T5O = W[13]; + T5Q = FMA(T5O, T5P, T5N); + Tat = FNMS(T5O, T5M, Tas); + } + { + E T65, T68, T66, TaB, T64, T67; + T65 = cr[WS(rs, 23)]; + T68 = ci[WS(rs, 23)]; + T64 = W[44]; + T66 = T64 * T65; + TaB = T64 * T68; + T67 = W[45]; + T69 = FMA(T67, T68, T66); + TaC = FNMS(T67, T65, TaB); + } + { + E T5S, T5V, T5T, Tau, T5R, T5U; + T5S = cr[WS(rs, 39)]; + T5V = ci[WS(rs, 39)]; + T5R = W[76]; + T5T = T5R * T5S; + Tau = T5R * T5V; + T5U = W[77]; + T5W = FMA(T5U, T5V, T5T); + Tav = FNMS(T5U, T5S, Tau); + } + { + E T5Z, T62, T60, Taz, T5Y, T61; + T5Z = cr[WS(rs, 55)]; + T62 = ci[WS(rs, 55)]; + T5Y = W[108]; + T60 = T5Y * T5Z; + Taz = T5Y * T62; + T61 = W[109]; + T63 = FMA(T61, T62, T60); + TaA = FNMS(T61, T5Z, Taz); + } + { + E T5X, T6a, TfT, TfU; + T5X = T5Q + T5W; + T6a = T63 + T69; + T6b = T5X + T6a; + Tg9 = T6a - T5X; + TfT = TaA + TaC; + TfU = Tat + Tav; + TfV = TfT - TfU; + ThY = TfU + TfT; + { + E Tax, Tbl, TaE, Tbk; + { + E Tar, Taw, Tay, TaD; + Tar = T5Q - T5W; + Taw = Tat - Tav; + Tax = Tar - Taw; + Tbl = Tar + Taw; + Tay = T63 - T69; + TaD = TaA - TaC; + TaE = Tay + TaD; + Tbk = Tay - TaD; + } + TaF = Tax + TaE; + Tdy = TaE - Tax; + Tbm = Tbk - Tbl; + Tdn = Tbl + Tbk; + } + } + } + { + E T4v, T9G, T4O, T9C, T4B, T9I, T4I, T9A; + { + E T4r, T4u, T4s, T9F, T4q, T4t; + T4r = cr[WS(rs, 5)]; + T4u = ci[WS(rs, 5)]; + T4q = W[8]; + T4s = T4q * T4r; + T9F = T4q * T4u; + T4t = W[9]; + T4v = FMA(T4t, T4u, T4s); + T9G = FNMS(T4t, T4r, T9F); + } + { + E T4K, T4N, T4L, T9B, T4J, T4M; + T4K = cr[WS(rs, 53)]; + T4N = ci[WS(rs, 53)]; + T4J = W[104]; + T4L = T4J * T4K; + T9B = T4J * T4N; + T4M = W[105]; + T4O = FMA(T4M, T4N, T4L); + T9C = FNMS(T4M, T4K, T9B); + } + { + E T4x, T4A, T4y, T9H, T4w, T4z; + T4x = cr[WS(rs, 37)]; + T4A = ci[WS(rs, 37)]; + T4w = W[72]; + T4y = T4w * T4x; + T9H = T4w * T4A; + T4z = W[73]; + T4B = FMA(T4z, T4A, T4y); + T9I = FNMS(T4z, T4x, T9H); + } + { + E T4E, T4H, T4F, T9z, T4D, T4G; + T4E = cr[WS(rs, 21)]; + T4H = ci[WS(rs, 21)]; + T4D = W[40]; + T4F = T4D * T4E; + T9z = T4D * T4H; + T4G = W[41]; + T4I = FMA(T4G, T4H, T4F); + T9A = FNMS(T4G, T4E, T9z); + } + { + E T4C, T4P, Tfw, Tfx, Tfy, Tfz; + T4C = T4v + T4B; + T4P = T4I + T4O; + Tfw = T4C - T4P; + Tfx = T9G + T9I; + Tfy = T9A + T9C; + Tfz = Tfx - Tfy; + T4Q = T4C + T4P; + ThJ = Tfx + Tfy; + TfA = Tfw - Tfz; + TfN = Tfw + Tfz; + } + { + E T9E, Td6, T9L, Td7; + { + E T9y, T9D, T9J, T9K; + T9y = T4v - T4B; + T9D = T9A - T9C; + T9E = T9y - T9D; + Td6 = T9y + T9D; + T9J = T9G - T9I; + T9K = T4I - T4O; + T9L = T9J + T9K; + Td7 = T9J - T9K; + } + T9M = FNMS(KP414213562, T9L, T9E); + Tdh = FNMS(KP414213562, Td6, Td7); + Taf = FMA(KP414213562, T9E, T9L); + Td8 = FMA(KP414213562, Td7, Td6); + } + } + { + E T4W, T9V, T5f, T9R, T52, T9X, T59, T9P; + { + E T4S, T4V, T4T, T9U, T4R, T4U; + T4S = cr[WS(rs, 61)]; + T4V = ci[WS(rs, 61)]; + T4R = W[120]; + T4T = T4R * T4S; + T9U = T4R * T4V; + T4U = W[121]; + T4W = FMA(T4U, T4V, T4T); + T9V = FNMS(T4U, T4S, T9U); + } + { + E T5b, T5e, T5c, T9Q, T5a, T5d; + T5b = cr[WS(rs, 45)]; + T5e = ci[WS(rs, 45)]; + T5a = W[88]; + T5c = T5a * T5b; + T9Q = T5a * T5e; + T5d = W[89]; + T5f = FMA(T5d, T5e, T5c); + T9R = FNMS(T5d, T5b, T9Q); + } + { + E T4Y, T51, T4Z, T9W, T4X, T50; + T4Y = cr[WS(rs, 29)]; + T51 = ci[WS(rs, 29)]; + T4X = W[56]; + T4Z = T4X * T4Y; + T9W = T4X * T51; + T50 = W[57]; + T52 = FMA(T50, T51, T4Z); + T9X = FNMS(T50, T4Y, T9W); + } + { + E T55, T58, T56, T9O, T54, T57; + T55 = cr[WS(rs, 13)]; + T58 = ci[WS(rs, 13)]; + T54 = W[24]; + T56 = T54 * T55; + T9O = T54 * T58; + T57 = W[25]; + T59 = FMA(T57, T58, T56); + T9P = FNMS(T57, T55, T9O); + } + { + E T53, T5g, TfB, TfC, TfD, TfE; + T53 = T4W + T52; + T5g = T59 + T5f; + TfB = T53 - T5g; + TfC = T9V + T9X; + TfD = T9P + T9R; + TfE = TfC - TfD; + T5h = T53 + T5g; + ThI = TfC + TfD; + TfF = TfB + TfE; + TfO = TfE - TfB; + } + { + E T9T, Td9, Ta0, Tda; + { + E T9N, T9S, T9Y, T9Z; + T9N = T4W - T52; + T9S = T9P - T9R; + T9T = T9N - T9S; + Td9 = T9N + T9S; + T9Y = T9V - T9X; + T9Z = T59 - T5f; + Ta0 = T9Y + T9Z; + Tda = T9Y - T9Z; + } + Ta1 = FMA(KP414213562, Ta0, T9T); + Tdi = FMA(KP414213562, Td9, Tda); + Tag = FNMS(KP414213562, T9T, Ta0); + Tdb = FNMS(KP414213562, Tda, Td9); + } + } + { + E T6i, TaQ, T6B, TaL, T6o, TaS, T6v, TaJ; + { + E T6e, T6h, T6f, TaP, T6d, T6g; + T6e = cr[WS(rs, 3)]; + T6h = ci[WS(rs, 3)]; + T6d = W[4]; + T6f = T6d * T6e; + TaP = T6d * T6h; + T6g = W[5]; + T6i = FMA(T6g, T6h, T6f); + TaQ = FNMS(T6g, T6e, TaP); + } + { + E T6x, T6A, T6y, TaK, T6w, T6z; + T6x = cr[WS(rs, 51)]; + T6A = ci[WS(rs, 51)]; + T6w = W[100]; + T6y = T6w * T6x; + TaK = T6w * T6A; + T6z = W[101]; + T6B = FMA(T6z, T6A, T6y); + TaL = FNMS(T6z, T6x, TaK); + } + { + E T6k, T6n, T6l, TaR, T6j, T6m; + T6k = cr[WS(rs, 35)]; + T6n = ci[WS(rs, 35)]; + T6j = W[68]; + T6l = T6j * T6k; + TaR = T6j * T6n; + T6m = W[69]; + T6o = FMA(T6m, T6n, T6l); + TaS = FNMS(T6m, T6k, TaR); + } + { + E T6r, T6u, T6s, TaI, T6q, T6t; + T6r = cr[WS(rs, 19)]; + T6u = ci[WS(rs, 19)]; + T6q = W[36]; + T6s = T6q * T6r; + TaI = T6q * T6u; + T6t = W[37]; + T6v = FMA(T6t, T6u, T6s); + TaJ = FNMS(T6t, T6r, TaI); + } + { + E T6p, T6C, TfX, TfY, TfZ, Tg0; + T6p = T6i + T6o; + T6C = T6v + T6B; + TfX = T6p - T6C; + TfY = TaQ + TaS; + TfZ = TaJ + TaL; + Tg0 = TfY - TfZ; + T6D = T6p + T6C; + ThU = TfY + TfZ; + Tg1 = TfX - Tg0; + Tgf = TfX + Tg0; + } + { + E TaN, Tdp, TaU, Tdq; + { + E TaH, TaM, TaO, TaT; + TaH = T6i - T6o; + TaM = TaJ - TaL; + TaN = TaH - TaM; + Tdp = TaH + TaM; + TaO = T6B - T6v; + TaT = TaQ - TaS; + TaU = TaO - TaT; + Tdq = TaT + TaO; + } + TaV = FMA(KP414213562, TaU, TaN); + TdA = FNMS(KP414213562, Tdp, Tdq); + Tbo = FNMS(KP414213562, TaN, TaU); + Tdr = FMA(KP414213562, Tdq, Tdp); + } + } + { + E T6J, Tb5, T72, Tb0, T6P, Tb7, T6W, TaY; + { + E T6F, T6I, T6G, Tb4, T6E, T6H; + T6F = cr[WS(rs, 59)]; + T6I = ci[WS(rs, 59)]; + T6E = W[116]; + T6G = T6E * T6F; + Tb4 = T6E * T6I; + T6H = W[117]; + T6J = FMA(T6H, T6I, T6G); + Tb5 = FNMS(T6H, T6F, Tb4); + } + { + E T6Y, T71, T6Z, TaZ, T6X, T70; + T6Y = cr[WS(rs, 43)]; + T71 = ci[WS(rs, 43)]; + T6X = W[84]; + T6Z = T6X * T6Y; + TaZ = T6X * T71; + T70 = W[85]; + T72 = FMA(T70, T71, T6Z); + Tb0 = FNMS(T70, T6Y, TaZ); + } + { + E T6L, T6O, T6M, Tb6, T6K, T6N; + T6L = cr[WS(rs, 27)]; + T6O = ci[WS(rs, 27)]; + T6K = W[52]; + T6M = T6K * T6L; + Tb6 = T6K * T6O; + T6N = W[53]; + T6P = FMA(T6N, T6O, T6M); + Tb7 = FNMS(T6N, T6L, Tb6); + } + { + E T6S, T6V, T6T, TaX, T6R, T6U; + T6S = cr[WS(rs, 11)]; + T6V = ci[WS(rs, 11)]; + T6R = W[20]; + T6T = T6R * T6S; + TaX = T6R * T6V; + T6U = W[21]; + T6W = FMA(T6U, T6V, T6T); + TaY = FNMS(T6U, T6S, TaX); + } + { + E T6Q, T73, Tg2, Tg3, Tg4, Tg5; + T6Q = T6J + T6P; + T73 = T6W + T72; + Tg2 = T6Q - T73; + Tg3 = Tb5 + Tb7; + Tg4 = TaY + Tb0; + Tg5 = Tg3 - Tg4; + T74 = T6Q + T73; + ThT = Tg3 + Tg4; + Tg6 = Tg2 + Tg5; + Tge = Tg2 - Tg5; + } + { + E Tb2, Tds, Tb9, Tdt; + { + E TaW, Tb1, Tb3, Tb8; + TaW = T6J - T6P; + Tb1 = TaY - Tb0; + Tb2 = TaW - Tb1; + Tds = TaW + Tb1; + Tb3 = T72 - T6W; + Tb8 = Tb5 - Tb7; + Tb9 = Tb3 - Tb8; + Tdt = Tb8 + Tb3; + } + Tba = FNMS(KP414213562, Tb9, Tb2); + TdB = FMA(KP414213562, Tds, Tdt); + Tbp = FMA(KP414213562, Tb2, Tb9); + Tdu = FNMS(KP414213562, Tdt, Tds); + } + } + { + E T1I, Tio, T3v, Tj1, TiX, Tj2, Tir, TiN, T76, TiJ, TiC, TiG, T5j, TiK, Tix; + E TiF; + { + E TO, T1H, Tip, Tiq; + TO = Tm + TN; + T1H = T1f + T1G; + T1I = TO + T1H; + Tio = TO - T1H; + { + E T2B, T3u, TiO, TiW; + T2B = T29 + T2A; + T3u = T32 + T3t; + T3v = T2B + T3u; + Tj1 = T2B - T3u; + TiO = Ths + Thr; + TiW = TiP + TiV; + TiX = TiO + TiW; + Tj2 = TiW - TiO; + } + Tip = ThB + ThC; + Tiq = Thw + Thx; + Tir = Tip - Tiq; + TiN = Tiq + Tip; + { + E T6c, T75, Tiy, Tiz, TiA, TiB; + T6c = T5K + T6b; + T75 = T6D + T74; + Tiy = T6c - T75; + Tiz = ThX + ThY; + TiA = ThU + ThT; + TiB = Tiz - TiA; + T76 = T6c + T75; + TiJ = Tiz + TiA; + TiC = Tiy - TiB; + TiG = Tiy + TiB; + } + { + E T4p, T5i, Tit, Tiu, Tiv, Tiw; + T4p = T3X + T4o; + T5i = T4Q + T5h; + Tit = T4p - T5i; + Tiu = ThM + ThN; + Tiv = ThJ + ThI; + Tiw = Tiu - Tiv; + T5j = T4p + T5i; + TiK = Tiu + Tiv; + Tix = Tit + Tiw; + TiF = Tit - Tiw; + } + } + { + E T3w, T77, Tj3, Tj4; + T3w = T1I + T3v; + T77 = T5j + T76; + ci[WS(rs, 31)] = T3w - T77; + cr[0] = T3w + T77; + Tj3 = Tj1 + Tj2; + Tj4 = TiC - Tix; + cr[WS(rs, 56)] = FMS(KP707106781, Tj4, Tj3); + ci[WS(rs, 39)] = FMA(KP707106781, Tj4, Tj3); + } + { + E Tj5, Tj6, Tis, TiD; + Tj5 = Tj2 - Tj1; + Tj6 = TiG - TiF; + cr[WS(rs, 40)] = FMS(KP707106781, Tj6, Tj5); + ci[WS(rs, 55)] = FMA(KP707106781, Tj6, Tj5); + Tis = Tio - Tir; + TiD = Tix + TiC; + ci[WS(rs, 23)] = FNMS(KP707106781, TiD, Tis); + cr[WS(rs, 8)] = FMA(KP707106781, TiD, Tis); + } + { + E TiE, TiH, TiM, TiY; + TiE = Tio + Tir; + TiH = TiF + TiG; + cr[WS(rs, 24)] = FNMS(KP707106781, TiH, TiE); + ci[WS(rs, 7)] = FMA(KP707106781, TiH, TiE); + TiM = TiK + TiJ; + TiY = TiN + TiX; + cr[WS(rs, 32)] = TiM - TiY; + ci[WS(rs, 63)] = TiM + TiY; + } + { + E TiZ, Tj0, TiI, TiL; + TiZ = T76 - T5j; + Tj0 = TiX - TiN; + cr[WS(rs, 48)] = TiZ - Tj0; + ci[WS(rs, 47)] = TiZ + Tj0; + TiI = T1I - T3v; + TiL = TiJ - TiK; + cr[WS(rs, 16)] = TiI - TiL; + ci[WS(rs, 15)] = TiI + TiL; + } + } + { + E T99, Tk2, TbB, TjW, Taj, TbL, Tbv, TbF, Tce, Tcy, Tci, Tcu, Tc7, Tcx, Tch; + E Tcr, TbZ, Tkg, Tcn, Tka, Tbs, TbM, Tbw, TbI, T80, Tk9, Tkf, Tby, TbS, TjV; + E Tk1, Tck; + { + E T8z, Tbz, T98, TbA; + { + E T8n, T8y, T8W, T97; + T8n = FMA(KP707106781, T8m, T87); + T8y = FMA(KP707106781, T8x, T8u); + T8z = FNMS(KP198912367, T8y, T8n); + Tbz = FMA(KP198912367, T8n, T8y); + T8W = FMA(KP707106781, T8V, T8G); + T97 = FMA(KP707106781, T96, T93); + T98 = FMA(KP198912367, T97, T8W); + TbA = FNMS(KP198912367, T8W, T97); + } + T99 = T8z + T98; + Tk2 = T98 - T8z; + TbB = Tbz - TbA; + TjW = Tbz + TbA; + } + { + E Ta3, TbD, Tai, TbE; + { + E T9x, Ta2, Tae, Tah; + T9x = FMA(KP707106781, T9w, T9h); + Ta2 = T9M + Ta1; + Ta3 = FMA(KP923879532, Ta2, T9x); + TbD = FNMS(KP923879532, Ta2, T9x); + Tae = FMA(KP707106781, Tad, Taa); + Tah = Taf + Tag; + Tai = FMA(KP923879532, Tah, Tae); + TbE = FNMS(KP923879532, Tah, Tae); + } + Taj = FNMS(KP098491403, Tai, Ta3); + TbL = FNMS(KP820678790, TbD, TbE); + Tbv = FMA(KP098491403, Ta3, Tai); + TbF = FMA(KP820678790, TbE, TbD); + } + { + E Tca, Tcs, Tcd, Tct; + { + E Tc8, Tc9, Tcb, Tcc; + Tc8 = FNMS(KP707106781, TaF, Taq); + Tc9 = Tbp - Tbo; + Tca = FNMS(KP923879532, Tc9, Tc8); + Tcs = FMA(KP923879532, Tc9, Tc8); + Tcb = FNMS(KP707106781, Tbm, Tbj); + Tcc = Tba - TaV; + Tcd = FMA(KP923879532, Tcc, Tcb); + Tct = FNMS(KP923879532, Tcc, Tcb); + } + Tce = FNMS(KP534511135, Tcd, Tca); + Tcy = FNMS(KP303346683, Tcs, Tct); + Tci = FMA(KP534511135, Tca, Tcd); + Tcu = FMA(KP303346683, Tct, Tcs); + } + { + E Tc3, Tcp, Tc6, Tcq; + { + E Tc1, Tc2, Tc4, Tc5; + Tc1 = FNMS(KP707106781, T9w, T9h); + Tc2 = Taf - Tag; + Tc3 = FNMS(KP923879532, Tc2, Tc1); + Tcp = FMA(KP923879532, Tc2, Tc1); + Tc4 = FNMS(KP707106781, Tad, Taa); + Tc5 = Ta1 - T9M; + Tc6 = FNMS(KP923879532, Tc5, Tc4); + Tcq = FMA(KP923879532, Tc5, Tc4); + } + Tc7 = FNMS(KP534511135, Tc6, Tc3); + Tcx = FNMS(KP303346683, Tcp, Tcq); + Tch = FMA(KP534511135, Tc3, Tc6); + Tcr = FMA(KP303346683, Tcq, Tcp); + } + { + E TbV, Tcm, TbY, Tcl; + { + E TbT, TbU, TbW, TbX; + TbT = FNMS(KP707106781, T96, T93); + TbU = FNMS(KP707106781, T8V, T8G); + TbV = FMA(KP668178637, TbU, TbT); + Tcm = FNMS(KP668178637, TbT, TbU); + TbW = FNMS(KP707106781, T8x, T8u); + TbX = FNMS(KP707106781, T8m, T87); + TbY = FNMS(KP668178637, TbX, TbW); + Tcl = FMA(KP668178637, TbW, TbX); + } + TbZ = TbV - TbY; + Tkg = Tcl - Tcm; + Tcn = Tcl + Tcm; + Tka = TbY + TbV; + } + { + E Tbc, TbG, Tbr, TbH; + { + E TaG, Tbb, Tbn, Tbq; + TaG = FMA(KP707106781, TaF, Taq); + Tbb = TaV + Tba; + Tbc = FMA(KP923879532, Tbb, TaG); + TbG = FNMS(KP923879532, Tbb, TaG); + Tbn = FMA(KP707106781, Tbm, Tbj); + Tbq = Tbo + Tbp; + Tbr = FMA(KP923879532, Tbq, Tbn); + TbH = FNMS(KP923879532, Tbq, Tbn); + } + Tbs = FNMS(KP098491403, Tbr, Tbc); + TbM = FNMS(KP820678790, TbG, TbH); + Tbw = FMA(KP098491403, Tbc, Tbr); + TbI = FMA(KP820678790, TbH, TbG); + } + { + E T7u, TbO, TjT, Tk7, T7Z, Tk8, TbR, TjU, T7t, TjS; + T7t = T7l + T7s; + T7u = FMA(KP707106781, T7t, T7e); + TbO = FNMS(KP707106781, T7t, T7e); + TjS = TcB - TcC; + TjT = FMA(KP707106781, TjS, TjR); + Tk7 = FNMS(KP707106781, TjS, TjR); + { + E T7J, T7Y, TbP, TbQ; + T7J = FNMS(KP414213562, T7I, T7B); + T7Y = FMA(KP414213562, T7X, T7Q); + T7Z = T7J + T7Y; + Tk8 = T7Y - T7J; + TbP = FMA(KP414213562, T7B, T7I); + TbQ = FNMS(KP414213562, T7Q, T7X); + TbR = TbP - TbQ; + TjU = TbP + TbQ; + } + T80 = FMA(KP923879532, T7Z, T7u); + Tk9 = FMA(KP923879532, Tk8, Tk7); + Tkf = FNMS(KP923879532, Tk8, Tk7); + Tby = FNMS(KP923879532, T7Z, T7u); + TbS = FNMS(KP923879532, TbR, TbO); + TjV = FMA(KP923879532, TjU, TjT); + Tk1 = FNMS(KP923879532, TjU, TjT); + Tck = FMA(KP923879532, TbR, TbO); + } + { + E T9a, Tbt, TbK, TbN; + T9a = FMA(KP980785280, T99, T80); + Tbt = Taj + Tbs; + cr[WS(rs, 31)] = FNMS(KP995184726, Tbt, T9a); + ci[0] = FMA(KP995184726, Tbt, T9a); + TbK = FNMS(KP980785280, TbB, Tby); + TbN = TbL + TbM; + cr[WS(rs, 23)] = FMA(KP773010453, TbN, TbK); + ci[WS(rs, 8)] = FNMS(KP773010453, TbN, TbK); + } + { + E Tkb, Tkc, Tkj, Tkk; + Tkb = FMA(KP831469612, Tka, Tk9); + Tkc = Tcx - Tcy; + cr[WS(rs, 35)] = FMS(KP956940335, Tkc, Tkb); + ci[WS(rs, 60)] = FMA(KP956940335, Tkc, Tkb); + Tkj = FNMS(KP831469612, Tkg, Tkf); + Tkk = Tce - Tc7; + cr[WS(rs, 43)] = FMS(KP881921264, Tkk, Tkj); + ci[WS(rs, 52)] = FMA(KP881921264, Tkk, Tkj); + } + { + E Tbu, Tbx, TbC, TbJ; + Tbu = FNMS(KP980785280, T99, T80); + Tbx = Tbv + Tbw; + ci[WS(rs, 16)] = FNMS(KP995184726, Tbx, Tbu); + cr[WS(rs, 15)] = FMA(KP995184726, Tbx, Tbu); + TbC = FMA(KP980785280, TbB, Tby); + TbJ = TbF + TbI; + ci[WS(rs, 24)] = FNMS(KP773010453, TbJ, TbC); + cr[WS(rs, 7)] = FMA(KP773010453, TbJ, TbC); + } + { + E Tkd, Tke, Tkh, Tki; + Tkd = FNMS(KP831469612, Tka, Tk9); + Tke = Tcu - Tcr; + cr[WS(rs, 51)] = FMS(KP956940335, Tke, Tkd); + ci[WS(rs, 44)] = FMA(KP956940335, Tke, Tkd); + Tkh = FMA(KP831469612, Tkg, Tkf); + Tki = Tci - Tch; + cr[WS(rs, 59)] = FMS(KP881921264, Tki, Tkh); + ci[WS(rs, 36)] = FMA(KP881921264, Tki, Tkh); + } + { + E Tc0, Tcf, Tcw, Tcz; + Tc0 = FMA(KP831469612, TbZ, TbS); + Tcf = Tc7 + Tce; + cr[WS(rs, 27)] = FNMS(KP881921264, Tcf, Tc0); + ci[WS(rs, 4)] = FMA(KP881921264, Tcf, Tc0); + Tcw = FNMS(KP831469612, Tcn, Tck); + Tcz = Tcx + Tcy; + cr[WS(rs, 19)] = FMA(KP956940335, Tcz, Tcw); + ci[WS(rs, 12)] = FNMS(KP956940335, Tcz, Tcw); + } + { + E TjX, TjY, Tk5, Tk6; + TjX = FMA(KP980785280, TjW, TjV); + TjY = Tbw - Tbv; + cr[WS(rs, 63)] = FMS(KP995184726, TjY, TjX); + ci[WS(rs, 32)] = FMA(KP995184726, TjY, TjX); + Tk5 = FNMS(KP980785280, Tk2, Tk1); + Tk6 = TbI - TbF; + cr[WS(rs, 55)] = FMS(KP773010453, Tk6, Tk5); + ci[WS(rs, 40)] = FMA(KP773010453, Tk6, Tk5); + } + { + E Tcg, Tcj, Tco, Tcv; + Tcg = FNMS(KP831469612, TbZ, TbS); + Tcj = Tch + Tci; + ci[WS(rs, 20)] = FNMS(KP881921264, Tcj, Tcg); + cr[WS(rs, 11)] = FMA(KP881921264, Tcj, Tcg); + Tco = FMA(KP831469612, Tcn, Tck); + Tcv = Tcr + Tcu; + ci[WS(rs, 28)] = FNMS(KP956940335, Tcv, Tco); + cr[WS(rs, 3)] = FMA(KP956940335, Tcv, Tco); + } + { + E TjZ, Tk0, Tk3, Tk4; + TjZ = FNMS(KP980785280, TjW, TjV); + Tk0 = Tbs - Taj; + cr[WS(rs, 47)] = FMS(KP995184726, Tk0, TjZ); + ci[WS(rs, 48)] = FMA(KP995184726, Tk0, TjZ); + Tk3 = FMA(KP980785280, Tk2, Tk1); + Tk4 = TbL - TbM; + cr[WS(rs, 39)] = FMS(KP773010453, Tk4, Tk3); + ci[WS(rs, 56)] = FMA(KP773010453, Tk4, Tk3); + } + } + { + E Thu, Ti8, Tj9, Tjf, ThF, Tjg, Tib, Tja, ThR, Til, Ti6, Tif, Ti2, Tim, Ti5; + E Tii; + { + E Thq, Tht, Tj7, Tj8; + Thq = Tm - TN; + Tht = Thr - Ths; + Thu = Thq - Tht; + Ti8 = Thq + Tht; + Tj7 = T1f - T1G; + Tj8 = TiV - TiP; + Tj9 = Tj7 + Tj8; + Tjf = Tj8 - Tj7; + } + { + E Thz, Ti9, ThE, Tia; + { + E Thv, Thy, ThA, ThD; + Thv = T29 - T2A; + Thy = Thw - Thx; + Thz = Thv + Thy; + Ti9 = Thv - Thy; + ThA = T32 - T3t; + ThD = ThB - ThC; + ThE = ThA - ThD; + Tia = ThA + ThD; + } + ThF = Thz + ThE; + Tjg = Tia - Ti9; + Tib = Ti9 + Tia; + Tja = Thz - ThE; + } + { + E ThL, Tid, ThQ, Tie; + { + E ThH, ThK, ThO, ThP; + ThH = T3X - T4o; + ThK = ThI - ThJ; + ThL = ThH - ThK; + Tid = ThH + ThK; + ThO = ThM - ThN; + ThP = T4Q - T5h; + ThQ = ThO - ThP; + Tie = ThO + ThP; + } + ThR = FMA(KP414213562, ThQ, ThL); + Til = FMA(KP414213562, Tid, Tie); + Ti6 = FNMS(KP414213562, ThL, ThQ); + Tif = FNMS(KP414213562, Tie, Tid); + } + { + E ThW, Tig, Ti1, Tih; + { + E ThS, ThV, ThZ, Ti0; + ThS = T5K - T6b; + ThV = ThT - ThU; + ThW = ThS - ThV; + Tig = ThS + ThV; + ThZ = ThX - ThY; + Ti0 = T74 - T6D; + Ti1 = ThZ + Ti0; + Tih = Ti0 - ThZ; + } + Ti2 = FNMS(KP414213562, Ti1, ThW); + Tim = FMA(KP414213562, Tig, Tih); + Ti5 = FMA(KP414213562, ThW, Ti1); + Tii = FNMS(KP414213562, Tih, Tig); + } + { + E ThG, Ti3, Tjh, Tji; + ThG = FMA(KP707106781, ThF, Thu); + Ti3 = ThR + Ti2; + ci[WS(rs, 27)] = FNMS(KP923879532, Ti3, ThG); + cr[WS(rs, 4)] = FMA(KP923879532, Ti3, ThG); + Tjh = FMA(KP707106781, Tjg, Tjf); + Tji = Ti6 + Ti5; + cr[WS(rs, 36)] = FMS(KP923879532, Tji, Tjh); + ci[WS(rs, 59)] = FMA(KP923879532, Tji, Tjh); + } + { + E Tjj, Tjk, Ti4, Ti7; + Tjj = FNMS(KP707106781, Tjg, Tjf); + Tjk = Ti2 - ThR; + cr[WS(rs, 52)] = FMS(KP923879532, Tjk, Tjj); + ci[WS(rs, 43)] = FMA(KP923879532, Tjk, Tjj); + Ti4 = FNMS(KP707106781, ThF, Thu); + Ti7 = Ti5 - Ti6; + cr[WS(rs, 20)] = FNMS(KP923879532, Ti7, Ti4); + ci[WS(rs, 11)] = FMA(KP923879532, Ti7, Ti4); + } + { + E Tic, Tij, Tjb, Tjc; + Tic = FMA(KP707106781, Tib, Ti8); + Tij = Tif + Tii; + cr[WS(rs, 28)] = FNMS(KP923879532, Tij, Tic); + ci[WS(rs, 3)] = FMA(KP923879532, Tij, Tic); + Tjb = FMA(KP707106781, Tja, Tj9); + Tjc = Tim - Til; + cr[WS(rs, 60)] = FMS(KP923879532, Tjc, Tjb); + ci[WS(rs, 35)] = FMA(KP923879532, Tjc, Tjb); + } + { + E Tjd, Tje, Tik, Tin; + Tjd = FNMS(KP707106781, Tja, Tj9); + Tje = Tii - Tif; + cr[WS(rs, 44)] = FMS(KP923879532, Tje, Tjd); + ci[WS(rs, 51)] = FMA(KP923879532, Tje, Tjd); + Tik = FNMS(KP707106781, Tib, Ti8); + Tin = Til + Tim; + ci[WS(rs, 19)] = FNMS(KP923879532, Tin, Tik); + cr[WS(rs, 12)] = FMA(KP923879532, Tin, Tik); + } + } + { + E Tf2, TjJ, Tgo, TjD, TgI, Tjv, Tha, Tjp, Tfp, Tjw, Tgr, Tjq, Th4, Tho, Th7; + E Thk, TfR, TgB, Tgl, Tgv, TgP, TjK, Thd, TjE, TgX, Thn, Th8, Thh, Tgi, TgC; + E Tgm, Tgy; + { + E TeQ, TjB, Tf1, TjC, TeV, Tf0; + TeQ = TeM + TeP; + TjB = Tjm - Tjl; + TeV = TeR - TeU; + Tf0 = TeW + TeZ; + Tf1 = TeV + Tf0; + TjC = Tf0 - TeV; + Tf2 = FNMS(KP707106781, Tf1, TeQ); + TjJ = FNMS(KP707106781, TjC, TjB); + Tgo = FMA(KP707106781, Tf1, TeQ); + TjD = FMA(KP707106781, TjC, TjB); + } + { + E TgE, Tjn, TgH, Tjo, TgF, TgG; + TgE = TeM - TeP; + Tjn = Tjl + Tjm; + TgF = TeR + TeU; + TgG = TeW - TeZ; + TgH = TgF + TgG; + Tjo = TgF - TgG; + TgI = FMA(KP707106781, TgH, TgE); + Tjv = FNMS(KP707106781, Tjo, Tjn); + Tha = FNMS(KP707106781, TgH, TgE); + Tjp = FMA(KP707106781, Tjo, Tjn); + } + { + E Tfd, Tgp, Tfo, Tgq; + { + E Tf7, Tfc, Tfi, Tfn; + Tf7 = Tf5 + Tf6; + Tfc = Tf8 + Tfb; + Tfd = FMA(KP414213562, Tfc, Tf7); + Tgp = FNMS(KP414213562, Tf7, Tfc); + Tfi = Tfg + Tfh; + Tfn = Tfj + Tfm; + Tfo = FNMS(KP414213562, Tfn, Tfi); + Tgq = FMA(KP414213562, Tfi, Tfn); + } + Tfp = Tfd - Tfo; + Tjw = Tgq - Tgp; + Tgr = Tgp + Tgq; + Tjq = Tfd + Tfo; + } + { + E Th0, Thi, Th3, Thj; + { + E TgY, TgZ, Th1, Th2; + TgY = TfS - TfV; + TgZ = Tgf + Tge; + Th0 = FMA(KP707106781, TgZ, TgY); + Thi = FNMS(KP707106781, TgZ, TgY); + Th1 = Tgc + Tg9; + Th2 = Tg6 - Tg1; + Th3 = FMA(KP707106781, Th2, Th1); + Thj = FNMS(KP707106781, Th2, Th1); + } + Th4 = FNMS(KP198912367, Th3, Th0); + Tho = FNMS(KP668178637, Thi, Thj); + Th7 = FMA(KP198912367, Th0, Th3); + Thk = FMA(KP668178637, Thj, Thi); + } + { + E TfH, Tgt, TfQ, Tgu; + { + E Tfv, TfG, TfM, TfP; + Tfv = Tfr + Tfu; + TfG = TfA + TfF; + TfH = FNMS(KP707106781, TfG, Tfv); + Tgt = FMA(KP707106781, TfG, Tfv); + TfM = TfK + TfL; + TfP = TfN + TfO; + TfQ = FNMS(KP707106781, TfP, TfM); + Tgu = FMA(KP707106781, TfP, TfM); + } + TfR = FMA(KP668178637, TfQ, TfH); + TgB = FMA(KP198912367, Tgt, Tgu); + Tgl = FNMS(KP668178637, TfH, TfQ); + Tgv = FNMS(KP198912367, Tgu, Tgt); + } + { + E TgL, Thc, TgO, Thb; + { + E TgJ, TgK, TgM, TgN; + TgJ = Tf8 - Tfb; + TgK = Tf5 - Tf6; + TgL = FMA(KP414213562, TgK, TgJ); + Thc = FNMS(KP414213562, TgJ, TgK); + TgM = Tfj - Tfm; + TgN = Tfg - Tfh; + TgO = FNMS(KP414213562, TgN, TgM); + Thb = FMA(KP414213562, TgM, TgN); + } + TgP = TgL + TgO; + TjK = TgL - TgO; + Thd = Thb - Thc; + TjE = Thc + Thb; + } + { + E TgT, Thf, TgW, Thg; + { + E TgR, TgS, TgU, TgV; + TgR = Tfr - Tfu; + TgS = TfN - TfO; + TgT = FMA(KP707106781, TgS, TgR); + Thf = FNMS(KP707106781, TgS, TgR); + TgU = TfK - TfL; + TgV = TfF - TfA; + TgW = FMA(KP707106781, TgV, TgU); + Thg = FNMS(KP707106781, TgV, TgU); + } + TgX = FMA(KP198912367, TgW, TgT); + Thn = FMA(KP668178637, Thf, Thg); + Th8 = FNMS(KP198912367, TgT, TgW); + Thh = FNMS(KP668178637, Thg, Thf); + } + { + E Tg8, Tgw, Tgh, Tgx; + { + E TfW, Tg7, Tgd, Tgg; + TfW = TfS + TfV; + Tg7 = Tg1 + Tg6; + Tg8 = FNMS(KP707106781, Tg7, TfW); + Tgw = FMA(KP707106781, Tg7, TfW); + Tgd = Tg9 - Tgc; + Tgg = Tge - Tgf; + Tgh = FNMS(KP707106781, Tgg, Tgd); + Tgx = FMA(KP707106781, Tgg, Tgd); + } + Tgi = FMA(KP668178637, Tgh, Tg8); + TgC = FMA(KP198912367, Tgw, Tgx); + Tgm = FNMS(KP668178637, Tg8, Tgh); + Tgy = FNMS(KP198912367, Tgx, Tgw); + } + { + E Tfq, Tgj, TgA, TgD; + Tfq = FMA(KP923879532, Tfp, Tf2); + Tgj = TfR + Tgi; + ci[WS(rs, 25)] = FNMS(KP831469612, Tgj, Tfq); + cr[WS(rs, 6)] = FMA(KP831469612, Tgj, Tfq); + TgA = FNMS(KP923879532, Tgr, Tgo); + TgD = TgB + TgC; + ci[WS(rs, 17)] = FNMS(KP980785280, TgD, TgA); + cr[WS(rs, 14)] = FMA(KP980785280, TgD, TgA); + } + { + E TjF, TjG, TjN, TjO; + TjF = FMA(KP923879532, TjE, TjD); + TjG = Th8 + Th7; + cr[WS(rs, 34)] = FMS(KP980785280, TjG, TjF); + ci[WS(rs, 61)] = FMA(KP980785280, TjG, TjF); + TjN = FNMS(KP923879532, TjK, TjJ); + TjO = Thk - Thh; + cr[WS(rs, 42)] = FMS(KP831469612, TjO, TjN); + ci[WS(rs, 53)] = FMA(KP831469612, TjO, TjN); + } + { + E Tgk, Tgn, Tgs, Tgz; + Tgk = FNMS(KP923879532, Tfp, Tf2); + Tgn = Tgl + Tgm; + cr[WS(rs, 22)] = FMA(KP831469612, Tgn, Tgk); + ci[WS(rs, 9)] = FNMS(KP831469612, Tgn, Tgk); + Tgs = FMA(KP923879532, Tgr, Tgo); + Tgz = Tgv + Tgy; + cr[WS(rs, 30)] = FNMS(KP980785280, Tgz, Tgs); + ci[WS(rs, 1)] = FMA(KP980785280, Tgz, Tgs); + } + { + E TjH, TjI, TjL, TjM; + TjH = FNMS(KP923879532, TjE, TjD); + TjI = Th4 - TgX; + cr[WS(rs, 50)] = FMS(KP980785280, TjI, TjH); + ci[WS(rs, 45)] = FMA(KP980785280, TjI, TjH); + TjL = FMA(KP923879532, TjK, TjJ); + TjM = Thn + Tho; + cr[WS(rs, 58)] = -(FMA(KP831469612, TjM, TjL)); + ci[WS(rs, 37)] = FNMS(KP831469612, TjM, TjL); + } + { + E TgQ, Th5, Thm, Thp; + TgQ = FMA(KP923879532, TgP, TgI); + Th5 = TgX + Th4; + ci[WS(rs, 29)] = FNMS(KP980785280, Th5, TgQ); + cr[WS(rs, 2)] = FMA(KP980785280, Th5, TgQ); + Thm = FNMS(KP923879532, Thd, Tha); + Thp = Thn - Tho; + ci[WS(rs, 21)] = FNMS(KP831469612, Thp, Thm); + cr[WS(rs, 10)] = FMA(KP831469612, Thp, Thm); + } + { + E Tjr, Tjs, Tjz, TjA; + Tjr = FMA(KP923879532, Tjq, Tjp); + Tjs = TgC - TgB; + cr[WS(rs, 62)] = FMS(KP980785280, Tjs, Tjr); + ci[WS(rs, 33)] = FMA(KP980785280, Tjs, Tjr); + Tjz = FNMS(KP923879532, Tjw, Tjv); + TjA = Tgi - TfR; + cr[WS(rs, 54)] = FMS(KP831469612, TjA, Tjz); + ci[WS(rs, 41)] = FMA(KP831469612, TjA, Tjz); + } + { + E Th6, Th9, The, Thl; + Th6 = FNMS(KP923879532, TgP, TgI); + Th9 = Th7 - Th8; + cr[WS(rs, 18)] = FNMS(KP980785280, Th9, Th6); + ci[WS(rs, 13)] = FMA(KP980785280, Th9, Th6); + The = FMA(KP923879532, Thd, Tha); + Thl = Thh + Thk; + cr[WS(rs, 26)] = FNMS(KP831469612, Thl, The); + ci[WS(rs, 5)] = FMA(KP831469612, Thl, The); + } + { + E Tjt, Tju, Tjx, Tjy; + Tjt = FNMS(KP923879532, Tjq, Tjp); + Tju = Tgy - Tgv; + cr[WS(rs, 46)] = FMS(KP980785280, Tju, Tjt); + ci[WS(rs, 49)] = FMA(KP980785280, Tju, Tjt); + Tjx = FMA(KP923879532, Tjw, Tjv); + Tjy = Tgl - Tgm; + cr[WS(rs, 38)] = FMS(KP831469612, Tjy, Tjx); + ci[WS(rs, 57)] = FMA(KP831469612, Tjy, Tjx); + } + } + { + E Td1, Tkw, TdN, Tkq, Tdl, TdX, TdI, TdR, Teq, TeK, Tet, TeG, Tej, TeJ, Teu; + E TeD, Teb, TkK, Tez, TkE, TdE, TdY, TdH, TdU, TcM, TkD, TkJ, TdK, Te4, Tkp; + E Tkv, Tew; + { + E TcT, TdM, Td0, TdL; + { + E TcP, TcS, TcW, TcZ; + TcP = FMA(KP707106781, TcO, TcN); + TcS = FMA(KP707106781, TcR, TcQ); + TcT = FMA(KP198912367, TcS, TcP); + TdM = FNMS(KP198912367, TcP, TcS); + TcW = FMA(KP707106781, TcV, TcU); + TcZ = FMA(KP707106781, TcY, TcX); + Td0 = FNMS(KP198912367, TcZ, TcW); + TdL = FMA(KP198912367, TcW, TcZ); + } + Td1 = TcT + Td0; + Tkw = TcT - Td0; + TdN = TdL - TdM; + Tkq = TdM + TdL; + } + { + E Tdd, TdP, Tdk, TdQ; + { + E Td5, Tdc, Tdg, Tdj; + Td5 = FMA(KP707106781, Td4, Td3); + Tdc = Td8 + Tdb; + Tdd = FMA(KP923879532, Tdc, Td5); + TdP = FNMS(KP923879532, Tdc, Td5); + Tdg = FMA(KP707106781, Tdf, Tde); + Tdj = Tdh + Tdi; + Tdk = FMA(KP923879532, Tdj, Tdg); + TdQ = FNMS(KP923879532, Tdj, Tdg); + } + Tdl = FMA(KP098491403, Tdk, Tdd); + TdX = FMA(KP820678790, TdP, TdQ); + TdI = FNMS(KP098491403, Tdd, Tdk); + TdR = FNMS(KP820678790, TdQ, TdP); + } + { + E Tem, TeE, Tep, TeF; + { + E Tek, Tel, Ten, Teo; + Tek = FNMS(KP707106781, Tdn, Tdm); + Tel = TdB - TdA; + Tem = FNMS(KP923879532, Tel, Tek); + TeE = FMA(KP923879532, Tel, Tek); + Ten = FNMS(KP707106781, Tdy, Tdx); + Teo = Tdu - Tdr; + Tep = FMA(KP923879532, Teo, Ten); + TeF = FNMS(KP923879532, Teo, Ten); + } + Teq = FNMS(KP534511135, Tep, Tem); + TeK = FNMS(KP303346683, TeE, TeF); + Tet = FMA(KP534511135, Tem, Tep); + TeG = FMA(KP303346683, TeF, TeE); + } + { + E Tef, TeB, Tei, TeC; + { + E Ted, Tee, Teg, Teh; + Ted = FNMS(KP707106781, Td4, Td3); + Tee = Tdi - Tdh; + Tef = FNMS(KP923879532, Tee, Ted); + TeB = FMA(KP923879532, Tee, Ted); + Teg = FNMS(KP707106781, Tdf, Tde); + Teh = Td8 - Tdb; + Tei = FNMS(KP923879532, Teh, Teg); + TeC = FMA(KP923879532, Teh, Teg); + } + Tej = FMA(KP534511135, Tei, Tef); + TeJ = FMA(KP303346683, TeB, TeC); + Teu = FNMS(KP534511135, Tef, Tei); + TeD = FNMS(KP303346683, TeC, TeB); + } + { + E Te7, Tex, Tea, Tey; + { + E Te5, Te6, Te8, Te9; + Te5 = FNMS(KP707106781, TcR, TcQ); + Te6 = FNMS(KP707106781, TcO, TcN); + Te7 = FMA(KP668178637, Te6, Te5); + Tex = FNMS(KP668178637, Te5, Te6); + Te8 = FNMS(KP707106781, TcY, TcX); + Te9 = FNMS(KP707106781, TcV, TcU); + Tea = FNMS(KP668178637, Te9, Te8); + Tey = FMA(KP668178637, Te8, Te9); + } + Teb = Te7 - Tea; + TkK = Tey - Tex; + Tez = Tex + Tey; + TkE = Te7 + Tea; + } + { + E Tdw, TdS, TdD, TdT; + { + E Tdo, Tdv, Tdz, TdC; + Tdo = FMA(KP707106781, Tdn, Tdm); + Tdv = Tdr + Tdu; + Tdw = FMA(KP923879532, Tdv, Tdo); + TdS = FNMS(KP923879532, Tdv, Tdo); + Tdz = FMA(KP707106781, Tdy, Tdx); + TdC = TdA + TdB; + TdD = FMA(KP923879532, TdC, Tdz); + TdT = FNMS(KP923879532, TdC, Tdz); + } + TdE = FNMS(KP098491403, TdD, Tdw); + TdY = FNMS(KP820678790, TdS, TdT); + TdH = FMA(KP098491403, Tdw, TdD); + TdU = FMA(KP820678790, TdT, TdS); + } + { + E TcE, Te0, Tkn, TkB, TcL, TkC, Te3, Tko, TcD, Tkm; + TcD = TcB + TcC; + TcE = FMA(KP707106781, TcD, TcA); + Te0 = FNMS(KP707106781, TcD, TcA); + Tkm = T7s - T7l; + Tkn = FMA(KP707106781, Tkm, Tkl); + TkB = FNMS(KP707106781, Tkm, Tkl); + { + E TcH, TcK, Te1, Te2; + TcH = FMA(KP414213562, TcG, TcF); + TcK = FNMS(KP414213562, TcJ, TcI); + TcL = TcH + TcK; + TkC = TcH - TcK; + Te1 = FMA(KP414213562, TcI, TcJ); + Te2 = FNMS(KP414213562, TcF, TcG); + Te3 = Te1 - Te2; + Tko = Te2 + Te1; + } + TcM = FMA(KP923879532, TcL, TcE); + TkD = FMA(KP923879532, TkC, TkB); + TkJ = FNMS(KP923879532, TkC, TkB); + TdK = FNMS(KP923879532, TcL, TcE); + Te4 = FNMS(KP923879532, Te3, Te0); + Tkp = FMA(KP923879532, Tko, Tkn); + Tkv = FNMS(KP923879532, Tko, Tkn); + Tew = FMA(KP923879532, Te3, Te0); + } + { + E Td2, TdF, TdW, TdZ; + Td2 = FMA(KP980785280, Td1, TcM); + TdF = Tdl + TdE; + ci[WS(rs, 30)] = FNMS(KP995184726, TdF, Td2); + cr[WS(rs, 1)] = FMA(KP995184726, TdF, Td2); + TdW = FNMS(KP980785280, TdN, TdK); + TdZ = TdX - TdY; + ci[WS(rs, 22)] = FNMS(KP773010453, TdZ, TdW); + cr[WS(rs, 9)] = FMA(KP773010453, TdZ, TdW); + } + { + E TkF, TkG, TkN, TkO; + TkF = FMA(KP831469612, TkE, TkD); + TkG = TeJ + TeK; + cr[WS(rs, 61)] = -(FMA(KP956940335, TkG, TkF)); + ci[WS(rs, 34)] = FNMS(KP956940335, TkG, TkF); + TkN = FNMS(KP831469612, TkK, TkJ); + TkO = Teq - Tej; + cr[WS(rs, 53)] = FMS(KP881921264, TkO, TkN); + ci[WS(rs, 42)] = FMA(KP881921264, TkO, TkN); + } + { + E TdG, TdJ, TdO, TdV; + TdG = FNMS(KP980785280, Td1, TcM); + TdJ = TdH - TdI; + cr[WS(rs, 17)] = FNMS(KP995184726, TdJ, TdG); + ci[WS(rs, 14)] = FMA(KP995184726, TdJ, TdG); + TdO = FMA(KP980785280, TdN, TdK); + TdV = TdR + TdU; + cr[WS(rs, 25)] = FNMS(KP773010453, TdV, TdO); + ci[WS(rs, 6)] = FMA(KP773010453, TdV, TdO); + } + { + E TkH, TkI, TkL, TkM; + TkH = FNMS(KP831469612, TkE, TkD); + TkI = TeG - TeD; + cr[WS(rs, 45)] = FMS(KP956940335, TkI, TkH); + ci[WS(rs, 50)] = FMA(KP956940335, TkI, TkH); + TkL = FMA(KP831469612, TkK, TkJ); + TkM = Teu + Tet; + cr[WS(rs, 37)] = FMS(KP881921264, TkM, TkL); + ci[WS(rs, 58)] = FMA(KP881921264, TkM, TkL); + } + { + E Tec, Ter, TeI, TeL; + Tec = FMA(KP831469612, Teb, Te4); + Ter = Tej + Teq; + ci[WS(rs, 26)] = FNMS(KP881921264, Ter, Tec); + cr[WS(rs, 5)] = FMA(KP881921264, Ter, Tec); + TeI = FNMS(KP831469612, Tez, Tew); + TeL = TeJ - TeK; + ci[WS(rs, 18)] = FNMS(KP956940335, TeL, TeI); + cr[WS(rs, 13)] = FMA(KP956940335, TeL, TeI); + } + { + E Tkr, Tks, Tkz, TkA; + Tkr = FMA(KP980785280, Tkq, Tkp); + Tks = TdI + TdH; + cr[WS(rs, 33)] = FMS(KP995184726, Tks, Tkr); + ci[WS(rs, 62)] = FMA(KP995184726, Tks, Tkr); + Tkz = FNMS(KP980785280, Tkw, Tkv); + TkA = TdU - TdR; + cr[WS(rs, 41)] = FMS(KP773010453, TkA, Tkz); + ci[WS(rs, 54)] = FMA(KP773010453, TkA, Tkz); + } + { + E Tes, Tev, TeA, TeH; + Tes = FNMS(KP831469612, Teb, Te4); + Tev = Tet - Teu; + cr[WS(rs, 21)] = FNMS(KP881921264, Tev, Tes); + ci[WS(rs, 10)] = FMA(KP881921264, Tev, Tes); + TeA = FMA(KP831469612, Tez, Tew); + TeH = TeD + TeG; + cr[WS(rs, 29)] = FNMS(KP956940335, TeH, TeA); + ci[WS(rs, 2)] = FMA(KP956940335, TeH, TeA); + } + { + E Tkt, Tku, Tkx, Tky; + Tkt = FNMS(KP980785280, Tkq, Tkp); + Tku = TdE - Tdl; + cr[WS(rs, 49)] = FMS(KP995184726, Tku, Tkt); + ci[WS(rs, 46)] = FMA(KP995184726, Tku, Tkt); + Tkx = FMA(KP980785280, Tkw, Tkv); + Tky = TdX + TdY; + cr[WS(rs, 57)] = -(FMA(KP773010453, Tky, Tkx)); + ci[WS(rs, 38)] = FNMS(KP773010453, Tky, Tkx); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 64}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 64, "hf_64", twinstr, &GENUS, {520, 126, 518, 0} }; + +void X(codelet_hf_64) (planner *p) { + X(khc2hc_register) (p, hf_64, &desc); +} +#else + +/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 64 -dit -name hf_64 -include rdft/scalar/hf.h */ + +/* + * This function contains 1038 FP additions, 500 FP multiplications, + * (or, 808 additions, 270 multiplications, 230 fused multiply/add), + * 176 stack variables, 15 constants, and 256 memory accesses + */ +#include "rdft/scalar/hf.h" + +static void hf_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP290284677, +0.290284677254462367636192375817395274691476278); + DK(KP956940335, +0.956940335732208864935797886980269969482849206); + DK(KP881921264, +0.881921264348355029712756863660388349508442621); + DK(KP471396736, +0.471396736825997648556387625905254377657460319); + DK(KP555570233, +0.555570233019602224742830813948532874374937191); + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP098017140, +0.098017140329560601994195563888641845861136673); + DK(KP995184726, +0.995184726672196886244836953109479921575474869); + DK(KP773010453, +0.773010453362736960810906609758469800971041293); + DK(KP634393284, +0.634393284163645498215171613225493370675687095); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP195090322, +0.195090322016128267848284868477022240927691618); + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { + E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, Tim, TaC; + E ThQ, T14, Tfr, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfq, T6J, T9P, TaJ, Tc1; + E TcZ, TeF, T1Q, T2d, Tfu, Tfv, Tfw, Tfx, T6Q, TaM, Tdb, TeI, T71, TaQ, T7a; + E TaN, Td6, TeJ, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeL; + E T7s, TaU, T7B, TaX, Tdh, TeM, T7y, TaT, T5j, TfR, Tec, TeX, TfY, Tgy, T8D; + E Tbl, T8O, Tbx, T9l, Tbm, TdV, Tf0, T9i, Tbw, T3M, TfL, TdL, TeT, TfI, Tgt; + E T7K, Tbd, T7V, Tb3, T8s, Tbe, Tdu, TeQ, T8p, Tb2, T4x, TfJ, TdE, TdM, TfO; + E Tgu, T87, T8u, T8i, T8v, Tba, Tbh, Tdz, TdN, Tb7, Tbg, T64, TfZ, Te5, Ted; + E TfU, Tgz, T90, T9n, T9b, T9o, Tbt, TbA, Te0, Tee, Tbq, Tbz; + { + E T1, TgR, T6, TgQ, Tc, T68, Th, T69; + T1 = cr[0]; + TgR = ci[0]; + { + E T3, T5, T2, T4; + T3 = cr[WS(rs, 32)]; + T5 = ci[WS(rs, 32)]; + T2 = W[62]; + T4 = W[63]; + T6 = FMA(T2, T3, T4 * T5); + TgQ = FNMS(T4, T3, T2 * T5); + } + { + E T9, Tb, T8, Ta; + T9 = cr[WS(rs, 16)]; + Tb = ci[WS(rs, 16)]; + T8 = W[30]; + Ta = W[31]; + Tc = FMA(T8, T9, Ta * Tb); + T68 = FNMS(Ta, T9, T8 * Tb); + } + { + E Te, Tg, Td, Tf; + Te = cr[WS(rs, 48)]; + Tg = ci[WS(rs, 48)]; + Td = W[94]; + Tf = W[95]; + Th = FMA(Td, Te, Tf * Tg); + T69 = FNMS(Tf, Te, Td * Tg); + } + { + E T7, Ti, ThR, ThS; + T7 = T1 + T6; + Ti = Tc + Th; + Tj = T7 + Ti; + TcL = T7 - Ti; + ThR = Tc - Th; + ThS = TgR - TgQ; + ThT = ThR + ThS; + Tin = ThS - ThR; + } + { + E T67, T6a, TgP, TgS; + T67 = T1 - T6; + T6a = T68 - T69; + T6b = T67 - T6a; + Taz = T67 + T6a; + TgP = T68 + T69; + TgS = TgQ + TgR; + TgT = TgP + TgS; + Thn = TgS - TgP; + } + } + { + E To, T6d, Tt, T6e, T6c, T6f, Tz, T6i, TE, T6j, T6h, T6k; + { + E Tl, Tn, Tk, Tm; + Tl = cr[WS(rs, 8)]; + Tn = ci[WS(rs, 8)]; + Tk = W[14]; + Tm = W[15]; + To = FMA(Tk, Tl, Tm * Tn); + T6d = FNMS(Tm, Tl, Tk * Tn); + } + { + E Tq, Ts, Tp, Tr; + Tq = cr[WS(rs, 40)]; + Ts = ci[WS(rs, 40)]; + Tp = W[78]; + Tr = W[79]; + Tt = FMA(Tp, Tq, Tr * Ts); + T6e = FNMS(Tr, Tq, Tp * Ts); + } + T6c = To - Tt; + T6f = T6d - T6e; + { + E Tw, Ty, Tv, Tx; + Tw = cr[WS(rs, 56)]; + Ty = ci[WS(rs, 56)]; + Tv = W[110]; + Tx = W[111]; + Tz = FMA(Tv, Tw, Tx * Ty); + T6i = FNMS(Tx, Tw, Tv * Ty); + } + { + E TB, TD, TA, TC; + TB = cr[WS(rs, 24)]; + TD = ci[WS(rs, 24)]; + TA = W[46]; + TC = W[47]; + TE = FMA(TA, TB, TC * TD); + T6j = FNMS(TC, TB, TA * TD); + } + T6h = Tz - TE; + T6k = T6i - T6j; + { + E Tu, TF, TcM, TcN; + Tu = To + Tt; + TF = Tz + TE; + TG = Tu + TF; + Thm = Tu - TF; + TcM = T6i + T6j; + TcN = T6d + T6e; + TcO = TcM - TcN; + TgO = TcN + TcM; + } + { + E T6g, T6l, TaA, TaB; + T6g = T6c - T6f; + T6l = T6h + T6k; + T6m = KP707106781 * (T6g + T6l); + Tim = KP707106781 * (T6l - T6g); + TaA = T6c + T6f; + TaB = T6h - T6k; + TaC = KP707106781 * (TaA + TaB); + ThQ = KP707106781 * (TaA - TaB); + } + } + { + E TS, TcR, T6o, T6v, T13, TcS, T6r, T6w, T6s, T6x; + { + E TM, T6t, TR, T6u; + { + E TJ, TL, TI, TK; + TJ = cr[WS(rs, 4)]; + TL = ci[WS(rs, 4)]; + TI = W[6]; + TK = W[7]; + TM = FMA(TI, TJ, TK * TL); + T6t = FNMS(TK, TJ, TI * TL); + } + { + E TO, TQ, TN, TP; + TO = cr[WS(rs, 36)]; + TQ = ci[WS(rs, 36)]; + TN = W[70]; + TP = W[71]; + TR = FMA(TN, TO, TP * TQ); + T6u = FNMS(TP, TO, TN * TQ); + } + TS = TM + TR; + TcR = T6t + T6u; + T6o = TM - TR; + T6v = T6t - T6u; + } + { + E TX, T6p, T12, T6q; + { + E TU, TW, TT, TV; + TU = cr[WS(rs, 20)]; + TW = ci[WS(rs, 20)]; + TT = W[38]; + TV = W[39]; + TX = FMA(TT, TU, TV * TW); + T6p = FNMS(TV, TU, TT * TW); + } + { + E TZ, T11, TY, T10; + TZ = cr[WS(rs, 52)]; + T11 = ci[WS(rs, 52)]; + TY = W[102]; + T10 = W[103]; + T12 = FMA(TY, TZ, T10 * T11); + T6q = FNMS(T10, TZ, TY * T11); + } + T13 = TX + T12; + TcS = T6p + T6q; + T6r = T6p - T6q; + T6w = TX - T12; + } + T14 = TS + T13; + Tfr = TcR + TcS; + T6s = T6o - T6r; + T6x = T6v + T6w; + T6y = FNMS(KP382683432, T6x, KP923879532 * T6s); + T9O = FMA(KP923879532, T6x, KP382683432 * T6s); + { + E TaE, TaF, TcQ, TcT; + TaE = T6v - T6w; + TaF = T6o + T6r; + TaG = FMA(KP382683432, TaE, KP923879532 * TaF); + Tc0 = FNMS(KP923879532, TaE, KP382683432 * TaF); + TcQ = TS - T13; + TcT = TcR - TcS; + TcU = TcQ + TcT; + TeE = TcQ - TcT; + } + } + { + E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I; + { + E T19, T6z, T1e, T6A; + { + E T16, T18, T15, T17; + T16 = cr[WS(rs, 60)]; + T18 = ci[WS(rs, 60)]; + T15 = W[118]; + T17 = W[119]; + T19 = FMA(T15, T16, T17 * T18); + T6z = FNMS(T17, T16, T15 * T18); + } + { + E T1b, T1d, T1a, T1c; + T1b = cr[WS(rs, 28)]; + T1d = ci[WS(rs, 28)]; + T1a = W[54]; + T1c = W[55]; + T1e = FMA(T1a, T1b, T1c * T1d); + T6A = FNMS(T1c, T1b, T1a * T1d); + } + T1f = T19 + T1e; + TcW = T6z + T6A; + T6B = T6z - T6A; + T6E = T19 - T1e; + } + { + E T1k, T6F, T1p, T6G; + { + E T1h, T1j, T1g, T1i; + T1h = cr[WS(rs, 12)]; + T1j = ci[WS(rs, 12)]; + T1g = W[22]; + T1i = W[23]; + T1k = FMA(T1g, T1h, T1i * T1j); + T6F = FNMS(T1i, T1h, T1g * T1j); + } + { + E T1m, T1o, T1l, T1n; + T1m = cr[WS(rs, 44)]; + T1o = ci[WS(rs, 44)]; + T1l = W[86]; + T1n = W[87]; + T1p = FMA(T1l, T1m, T1n * T1o); + T6G = FNMS(T1n, T1m, T1l * T1o); + } + T1q = T1k + T1p; + TcX = T6F + T6G; + T6C = T1k - T1p; + T6H = T6F - T6G; + } + T1r = T1f + T1q; + Tfq = TcW + TcX; + T6D = T6B + T6C; + T6I = T6E - T6H; + T6J = FMA(KP382683432, T6D, KP923879532 * T6I); + T9P = FNMS(KP923879532, T6D, KP382683432 * T6I); + { + E TaH, TaI, TcV, TcY; + TaH = T6E + T6H; + TaI = T6B - T6C; + TaJ = FNMS(KP382683432, TaI, KP923879532 * TaH); + Tc1 = FMA(KP923879532, TaI, KP382683432 * TaH); + TcV = T1f - T1q; + TcY = TcW - TcX; + TcZ = TcV - TcY; + TeF = TcV + TcY; + } + } + { + E T1y, T73, T1D, T74, T1E, Td7, T1J, T6N, T1O, T6O, T1P, Td8, T21, Td4, T6R; + E T6U, T2c, Td3, T6W, T6Z; + { + E T1v, T1x, T1u, T1w; + T1v = cr[WS(rs, 2)]; + T1x = ci[WS(rs, 2)]; + T1u = W[2]; + T1w = W[3]; + T1y = FMA(T1u, T1v, T1w * T1x); + T73 = FNMS(T1w, T1v, T1u * T1x); + } + { + E T1A, T1C, T1z, T1B; + T1A = cr[WS(rs, 34)]; + T1C = ci[WS(rs, 34)]; + T1z = W[66]; + T1B = W[67]; + T1D = FMA(T1z, T1A, T1B * T1C); + T74 = FNMS(T1B, T1A, T1z * T1C); + } + T1E = T1y + T1D; + Td7 = T73 + T74; + { + E T1G, T1I, T1F, T1H; + T1G = cr[WS(rs, 18)]; + T1I = ci[WS(rs, 18)]; + T1F = W[34]; + T1H = W[35]; + T1J = FMA(T1F, T1G, T1H * T1I); + T6N = FNMS(T1H, T1G, T1F * T1I); + } + { + E T1L, T1N, T1K, T1M; + T1L = cr[WS(rs, 50)]; + T1N = ci[WS(rs, 50)]; + T1K = W[98]; + T1M = W[99]; + T1O = FMA(T1K, T1L, T1M * T1N); + T6O = FNMS(T1M, T1L, T1K * T1N); + } + T1P = T1J + T1O; + Td8 = T6N + T6O; + { + E T1V, T6S, T20, T6T; + { + E T1S, T1U, T1R, T1T; + T1S = cr[WS(rs, 10)]; + T1U = ci[WS(rs, 10)]; + T1R = W[18]; + T1T = W[19]; + T1V = FMA(T1R, T1S, T1T * T1U); + T6S = FNMS(T1T, T1S, T1R * T1U); + } + { + E T1X, T1Z, T1W, T1Y; + T1X = cr[WS(rs, 42)]; + T1Z = ci[WS(rs, 42)]; + T1W = W[82]; + T1Y = W[83]; + T20 = FMA(T1W, T1X, T1Y * T1Z); + T6T = FNMS(T1Y, T1X, T1W * T1Z); + } + T21 = T1V + T20; + Td4 = T6S + T6T; + T6R = T1V - T20; + T6U = T6S - T6T; + } + { + E T26, T6X, T2b, T6Y; + { + E T23, T25, T22, T24; + T23 = cr[WS(rs, 58)]; + T25 = ci[WS(rs, 58)]; + T22 = W[114]; + T24 = W[115]; + T26 = FMA(T22, T23, T24 * T25); + T6X = FNMS(T24, T23, T22 * T25); + } + { + E T28, T2a, T27, T29; + T28 = cr[WS(rs, 26)]; + T2a = ci[WS(rs, 26)]; + T27 = W[50]; + T29 = W[51]; + T2b = FMA(T27, T28, T29 * T2a); + T6Y = FNMS(T29, T28, T27 * T2a); + } + T2c = T26 + T2b; + Td3 = T6X + T6Y; + T6W = T26 - T2b; + T6Z = T6X - T6Y; + } + T1Q = T1E + T1P; + T2d = T21 + T2c; + Tfu = T1Q - T2d; + Tfv = Td7 + Td8; + Tfw = Td4 + Td3; + Tfx = Tfv - Tfw; + { + E T6M, T6P, Td9, Tda; + T6M = T1y - T1D; + T6P = T6N - T6O; + T6Q = T6M - T6P; + TaM = T6M + T6P; + Td9 = Td7 - Td8; + Tda = T21 - T2c; + Tdb = Td9 - Tda; + TeI = Td9 + Tda; + } + { + E T6V, T70, T78, T79; + T6V = T6R - T6U; + T70 = T6W + T6Z; + T71 = KP707106781 * (T6V + T70); + TaQ = KP707106781 * (T70 - T6V); + T78 = T6R + T6U; + T79 = T6Z - T6W; + T7a = KP707106781 * (T78 + T79); + TaN = KP707106781 * (T78 - T79); + } + { + E Td2, Td5, T75, T76; + Td2 = T1E - T1P; + Td5 = Td3 - Td4; + Td6 = Td2 - Td5; + TeJ = Td2 + Td5; + T75 = T73 - T74; + T76 = T1J - T1O; + T77 = T75 + T76; + TaP = T75 - T76; + } + } + { + E T2j, T7u, T2o, T7v, T2p, Tdd, T2u, T7e, T2z, T7f, T2A, Tde, T2M, Tdk, T7i; + E T7l, T2X, Tdj, T7n, T7q; + { + E T2g, T2i, T2f, T2h; + T2g = cr[WS(rs, 62)]; + T2i = ci[WS(rs, 62)]; + T2f = W[122]; + T2h = W[123]; + T2j = FMA(T2f, T2g, T2h * T2i); + T7u = FNMS(T2h, T2g, T2f * T2i); + } + { + E T2l, T2n, T2k, T2m; + T2l = cr[WS(rs, 30)]; + T2n = ci[WS(rs, 30)]; + T2k = W[58]; + T2m = W[59]; + T2o = FMA(T2k, T2l, T2m * T2n); + T7v = FNMS(T2m, T2l, T2k * T2n); + } + T2p = T2j + T2o; + Tdd = T7u + T7v; + { + E T2r, T2t, T2q, T2s; + T2r = cr[WS(rs, 14)]; + T2t = ci[WS(rs, 14)]; + T2q = W[26]; + T2s = W[27]; + T2u = FMA(T2q, T2r, T2s * T2t); + T7e = FNMS(T2s, T2r, T2q * T2t); + } + { + E T2w, T2y, T2v, T2x; + T2w = cr[WS(rs, 46)]; + T2y = ci[WS(rs, 46)]; + T2v = W[90]; + T2x = W[91]; + T2z = FMA(T2v, T2w, T2x * T2y); + T7f = FNMS(T2x, T2w, T2v * T2y); + } + T2A = T2u + T2z; + Tde = T7e + T7f; + { + E T2G, T7j, T2L, T7k; + { + E T2D, T2F, T2C, T2E; + T2D = cr[WS(rs, 6)]; + T2F = ci[WS(rs, 6)]; + T2C = W[10]; + T2E = W[11]; + T2G = FMA(T2C, T2D, T2E * T2F); + T7j = FNMS(T2E, T2D, T2C * T2F); + } + { + E T2I, T2K, T2H, T2J; + T2I = cr[WS(rs, 38)]; + T2K = ci[WS(rs, 38)]; + T2H = W[74]; + T2J = W[75]; + T2L = FMA(T2H, T2I, T2J * T2K); + T7k = FNMS(T2J, T2I, T2H * T2K); + } + T2M = T2G + T2L; + Tdk = T7j + T7k; + T7i = T2G - T2L; + T7l = T7j - T7k; + } + { + E T2R, T7o, T2W, T7p; + { + E T2O, T2Q, T2N, T2P; + T2O = cr[WS(rs, 54)]; + T2Q = ci[WS(rs, 54)]; + T2N = W[106]; + T2P = W[107]; + T2R = FMA(T2N, T2O, T2P * T2Q); + T7o = FNMS(T2P, T2O, T2N * T2Q); + } + { + E T2T, T2V, T2S, T2U; + T2T = cr[WS(rs, 22)]; + T2V = ci[WS(rs, 22)]; + T2S = W[42]; + T2U = W[43]; + T2W = FMA(T2S, T2T, T2U * T2V); + T7p = FNMS(T2U, T2T, T2S * T2V); + } + T2X = T2R + T2W; + Tdj = T7o + T7p; + T7n = T2R - T2W; + T7q = T7o - T7p; + } + T2B = T2p + T2A; + T2Y = T2M + T2X; + Tfz = T2B - T2Y; + TfA = Tdd + Tde; + TfB = Tdk + Tdj; + TfC = TfA - TfB; + { + E T7d, T7g, Tdi, Tdl; + T7d = T2j - T2o; + T7g = T7e - T7f; + T7h = T7d - T7g; + TaW = T7d + T7g; + Tdi = T2p - T2A; + Tdl = Tdj - Tdk; + Tdm = Tdi - Tdl; + TeL = Tdi + Tdl; + } + { + E T7m, T7r, T7z, T7A; + T7m = T7i - T7l; + T7r = T7n + T7q; + T7s = KP707106781 * (T7m + T7r); + TaU = KP707106781 * (T7r - T7m); + T7z = T7i + T7l; + T7A = T7q - T7n; + T7B = KP707106781 * (T7z + T7A); + TaX = KP707106781 * (T7z - T7A); + } + { + E Tdf, Tdg, T7w, T7x; + Tdf = Tdd - Tde; + Tdg = T2M - T2X; + Tdh = Tdf - Tdg; + TeM = Tdf + Tdg; + T7w = T7u - T7v; + T7x = T2u - T2z; + T7y = T7w + T7x; + TaT = T7w - T7x; + } + } + { + E T4D, T9e, T4I, T9f, T4J, TdR, T4O, T8A, T4T, T8B, T4U, TdS, T56, Tea, T8E; + E T8H, T5h, Te9, T8J, T8M; + { + E T4A, T4C, T4z, T4B; + T4A = cr[WS(rs, 63)]; + T4C = ci[WS(rs, 63)]; + T4z = W[124]; + T4B = W[125]; + T4D = FMA(T4z, T4A, T4B * T4C); + T9e = FNMS(T4B, T4A, T4z * T4C); + } + { + E T4F, T4H, T4E, T4G; + T4F = cr[WS(rs, 31)]; + T4H = ci[WS(rs, 31)]; + T4E = W[60]; + T4G = W[61]; + T4I = FMA(T4E, T4F, T4G * T4H); + T9f = FNMS(T4G, T4F, T4E * T4H); + } + T4J = T4D + T4I; + TdR = T9e + T9f; + { + E T4L, T4N, T4K, T4M; + T4L = cr[WS(rs, 15)]; + T4N = ci[WS(rs, 15)]; + T4K = W[28]; + T4M = W[29]; + T4O = FMA(T4K, T4L, T4M * T4N); + T8A = FNMS(T4M, T4L, T4K * T4N); + } + { + E T4Q, T4S, T4P, T4R; + T4Q = cr[WS(rs, 47)]; + T4S = ci[WS(rs, 47)]; + T4P = W[92]; + T4R = W[93]; + T4T = FMA(T4P, T4Q, T4R * T4S); + T8B = FNMS(T4R, T4Q, T4P * T4S); + } + T4U = T4O + T4T; + TdS = T8A + T8B; + { + E T50, T8F, T55, T8G; + { + E T4X, T4Z, T4W, T4Y; + T4X = cr[WS(rs, 7)]; + T4Z = ci[WS(rs, 7)]; + T4W = W[12]; + T4Y = W[13]; + T50 = FMA(T4W, T4X, T4Y * T4Z); + T8F = FNMS(T4Y, T4X, T4W * T4Z); + } + { + E T52, T54, T51, T53; + T52 = cr[WS(rs, 39)]; + T54 = ci[WS(rs, 39)]; + T51 = W[76]; + T53 = W[77]; + T55 = FMA(T51, T52, T53 * T54); + T8G = FNMS(T53, T52, T51 * T54); + } + T56 = T50 + T55; + Tea = T8F + T8G; + T8E = T50 - T55; + T8H = T8F - T8G; + } + { + E T5b, T8K, T5g, T8L; + { + E T58, T5a, T57, T59; + T58 = cr[WS(rs, 55)]; + T5a = ci[WS(rs, 55)]; + T57 = W[108]; + T59 = W[109]; + T5b = FMA(T57, T58, T59 * T5a); + T8K = FNMS(T59, T58, T57 * T5a); + } + { + E T5d, T5f, T5c, T5e; + T5d = cr[WS(rs, 23)]; + T5f = ci[WS(rs, 23)]; + T5c = W[44]; + T5e = W[45]; + T5g = FMA(T5c, T5d, T5e * T5f); + T8L = FNMS(T5e, T5d, T5c * T5f); + } + T5h = T5b + T5g; + Te9 = T8K + T8L; + T8J = T5b - T5g; + T8M = T8K - T8L; + } + { + E T4V, T5i, Te8, Teb; + T4V = T4J + T4U; + T5i = T56 + T5h; + T5j = T4V + T5i; + TfR = T4V - T5i; + Te8 = T4J - T4U; + Teb = Te9 - Tea; + Tec = Te8 - Teb; + TeX = Te8 + Teb; + } + { + E TfW, TfX, T8z, T8C; + TfW = TdR + TdS; + TfX = Tea + Te9; + TfY = TfW - TfX; + Tgy = TfW + TfX; + T8z = T4D - T4I; + T8C = T8A - T8B; + T8D = T8z - T8C; + Tbl = T8z + T8C; + } + { + E T8I, T8N, T9j, T9k; + T8I = T8E - T8H; + T8N = T8J + T8M; + T8O = KP707106781 * (T8I + T8N); + Tbx = KP707106781 * (T8N - T8I); + T9j = T8E + T8H; + T9k = T8M - T8J; + T9l = KP707106781 * (T9j + T9k); + Tbm = KP707106781 * (T9j - T9k); + } + { + E TdT, TdU, T9g, T9h; + TdT = TdR - TdS; + TdU = T56 - T5h; + TdV = TdT - TdU; + Tf0 = TdT + TdU; + T9g = T9e - T9f; + T9h = T4O - T4T; + T9i = T9g + T9h; + Tbw = T9g - T9h; + } + } + { + E T36, T7G, T3b, T7H, T3c, TdH, T3h, T8m, T3m, T8n, T3n, TdI, T3z, Tds, T7L; + E T7O, T3K, Tdr, T7S, T7T; + { + E T33, T35, T32, T34; + T33 = cr[WS(rs, 1)]; + T35 = ci[WS(rs, 1)]; + T32 = W[0]; + T34 = W[1]; + T36 = FMA(T32, T33, T34 * T35); + T7G = FNMS(T34, T33, T32 * T35); + } + { + E T38, T3a, T37, T39; + T38 = cr[WS(rs, 33)]; + T3a = ci[WS(rs, 33)]; + T37 = W[64]; + T39 = W[65]; + T3b = FMA(T37, T38, T39 * T3a); + T7H = FNMS(T39, T38, T37 * T3a); + } + T3c = T36 + T3b; + TdH = T7G + T7H; + { + E T3e, T3g, T3d, T3f; + T3e = cr[WS(rs, 17)]; + T3g = ci[WS(rs, 17)]; + T3d = W[32]; + T3f = W[33]; + T3h = FMA(T3d, T3e, T3f * T3g); + T8m = FNMS(T3f, T3e, T3d * T3g); + } + { + E T3j, T3l, T3i, T3k; + T3j = cr[WS(rs, 49)]; + T3l = ci[WS(rs, 49)]; + T3i = W[96]; + T3k = W[97]; + T3m = FMA(T3i, T3j, T3k * T3l); + T8n = FNMS(T3k, T3j, T3i * T3l); + } + T3n = T3h + T3m; + TdI = T8m + T8n; + { + E T3t, T7M, T3y, T7N; + { + E T3q, T3s, T3p, T3r; + T3q = cr[WS(rs, 9)]; + T3s = ci[WS(rs, 9)]; + T3p = W[16]; + T3r = W[17]; + T3t = FMA(T3p, T3q, T3r * T3s); + T7M = FNMS(T3r, T3q, T3p * T3s); + } + { + E T3v, T3x, T3u, T3w; + T3v = cr[WS(rs, 41)]; + T3x = ci[WS(rs, 41)]; + T3u = W[80]; + T3w = W[81]; + T3y = FMA(T3u, T3v, T3w * T3x); + T7N = FNMS(T3w, T3v, T3u * T3x); + } + T3z = T3t + T3y; + Tds = T7M + T7N; + T7L = T3t - T3y; + T7O = T7M - T7N; + } + { + E T3E, T7Q, T3J, T7R; + { + E T3B, T3D, T3A, T3C; + T3B = cr[WS(rs, 57)]; + T3D = ci[WS(rs, 57)]; + T3A = W[112]; + T3C = W[113]; + T3E = FMA(T3A, T3B, T3C * T3D); + T7Q = FNMS(T3C, T3B, T3A * T3D); + } + { + E T3G, T3I, T3F, T3H; + T3G = cr[WS(rs, 25)]; + T3I = ci[WS(rs, 25)]; + T3F = W[48]; + T3H = W[49]; + T3J = FMA(T3F, T3G, T3H * T3I); + T7R = FNMS(T3H, T3G, T3F * T3I); + } + T3K = T3E + T3J; + Tdr = T7Q + T7R; + T7S = T7Q - T7R; + T7T = T3E - T3J; + } + { + E T3o, T3L, TdJ, TdK; + T3o = T3c + T3n; + T3L = T3z + T3K; + T3M = T3o + T3L; + TfL = T3o - T3L; + TdJ = TdH - TdI; + TdK = T3z - T3K; + TdL = TdJ - TdK; + TeT = TdJ + TdK; + } + { + E TfG, TfH, T7I, T7J; + TfG = TdH + TdI; + TfH = Tds + Tdr; + TfI = TfG - TfH; + Tgt = TfG + TfH; + T7I = T7G - T7H; + T7J = T3h - T3m; + T7K = T7I + T7J; + Tbd = T7I - T7J; + } + { + E T7P, T7U, T8q, T8r; + T7P = T7L + T7O; + T7U = T7S - T7T; + T7V = KP707106781 * (T7P + T7U); + Tb3 = KP707106781 * (T7P - T7U); + T8q = T7L - T7O; + T8r = T7T + T7S; + T8s = KP707106781 * (T8q + T8r); + Tbe = KP707106781 * (T8r - T8q); + } + { + E Tdq, Tdt, T8l, T8o; + Tdq = T3c - T3n; + Tdt = Tdr - Tds; + Tdu = Tdq - Tdt; + TeQ = Tdq + Tdt; + T8l = T36 - T3b; + T8o = T8m - T8n; + T8p = T8l - T8o; + Tb2 = T8l + T8o; + } + } + { + E T3X, Tdw, T7Z, T82, T4v, TdB, T8b, T8g, T48, Tdx, T80, T85, T4k, TdA, T8a; + E T8d; + { + E T3R, T7X, T3W, T7Y; + { + E T3O, T3Q, T3N, T3P; + T3O = cr[WS(rs, 5)]; + T3Q = ci[WS(rs, 5)]; + T3N = W[8]; + T3P = W[9]; + T3R = FMA(T3N, T3O, T3P * T3Q); + T7X = FNMS(T3P, T3O, T3N * T3Q); + } + { + E T3T, T3V, T3S, T3U; + T3T = cr[WS(rs, 37)]; + T3V = ci[WS(rs, 37)]; + T3S = W[72]; + T3U = W[73]; + T3W = FMA(T3S, T3T, T3U * T3V); + T7Y = FNMS(T3U, T3T, T3S * T3V); + } + T3X = T3R + T3W; + Tdw = T7X + T7Y; + T7Z = T7X - T7Y; + T82 = T3R - T3W; + } + { + E T4p, T8e, T4u, T8f; + { + E T4m, T4o, T4l, T4n; + T4m = cr[WS(rs, 13)]; + T4o = ci[WS(rs, 13)]; + T4l = W[24]; + T4n = W[25]; + T4p = FMA(T4l, T4m, T4n * T4o); + T8e = FNMS(T4n, T4m, T4l * T4o); + } + { + E T4r, T4t, T4q, T4s; + T4r = cr[WS(rs, 45)]; + T4t = ci[WS(rs, 45)]; + T4q = W[88]; + T4s = W[89]; + T4u = FMA(T4q, T4r, T4s * T4t); + T8f = FNMS(T4s, T4r, T4q * T4t); + } + T4v = T4p + T4u; + TdB = T8e + T8f; + T8b = T4p - T4u; + T8g = T8e - T8f; + } + { + E T42, T83, T47, T84; + { + E T3Z, T41, T3Y, T40; + T3Z = cr[WS(rs, 21)]; + T41 = ci[WS(rs, 21)]; + T3Y = W[40]; + T40 = W[41]; + T42 = FMA(T3Y, T3Z, T40 * T41); + T83 = FNMS(T40, T3Z, T3Y * T41); + } + { + E T44, T46, T43, T45; + T44 = cr[WS(rs, 53)]; + T46 = ci[WS(rs, 53)]; + T43 = W[104]; + T45 = W[105]; + T47 = FMA(T43, T44, T45 * T46); + T84 = FNMS(T45, T44, T43 * T46); + } + T48 = T42 + T47; + Tdx = T83 + T84; + T80 = T42 - T47; + T85 = T83 - T84; + } + { + E T4e, T88, T4j, T89; + { + E T4b, T4d, T4a, T4c; + T4b = cr[WS(rs, 61)]; + T4d = ci[WS(rs, 61)]; + T4a = W[120]; + T4c = W[121]; + T4e = FMA(T4a, T4b, T4c * T4d); + T88 = FNMS(T4c, T4b, T4a * T4d); + } + { + E T4g, T4i, T4f, T4h; + T4g = cr[WS(rs, 29)]; + T4i = ci[WS(rs, 29)]; + T4f = W[56]; + T4h = W[57]; + T4j = FMA(T4f, T4g, T4h * T4i); + T89 = FNMS(T4h, T4g, T4f * T4i); + } + T4k = T4e + T4j; + TdA = T88 + T89; + T8a = T88 - T89; + T8d = T4e - T4j; + } + { + E T49, T4w, TdC, TdD; + T49 = T3X + T48; + T4w = T4k + T4v; + T4x = T49 + T4w; + TfJ = T49 - T4w; + TdC = TdA - TdB; + TdD = T4k - T4v; + TdE = TdC - TdD; + TdM = TdD + TdC; + } + { + E TfM, TfN, T81, T86; + TfM = TdA + TdB; + TfN = Tdw + Tdx; + TfO = TfM - TfN; + Tgu = TfN + TfM; + T81 = T7Z + T80; + T86 = T82 - T85; + T87 = FMA(KP923879532, T81, KP382683432 * T86); + T8u = FNMS(KP382683432, T81, KP923879532 * T86); + } + { + E T8c, T8h, Tb8, Tb9; + T8c = T8a + T8b; + T8h = T8d - T8g; + T8i = FNMS(KP382683432, T8h, KP923879532 * T8c); + T8v = FMA(KP382683432, T8c, KP923879532 * T8h); + Tb8 = T8d + T8g; + Tb9 = T8a - T8b; + Tba = FNMS(KP382683432, Tb9, KP923879532 * Tb8); + Tbh = FMA(KP923879532, Tb9, KP382683432 * Tb8); + } + { + E Tdv, Tdy, Tb5, Tb6; + Tdv = T3X - T48; + Tdy = Tdw - Tdx; + Tdz = Tdv + Tdy; + TdN = Tdv - Tdy; + Tb5 = T7Z - T80; + Tb6 = T82 + T85; + Tb7 = FMA(KP382683432, Tb5, KP923879532 * Tb6); + Tbg = FNMS(KP382683432, Tb6, KP923879532 * Tb5); + } + } + { + E T5u, Te2, T8Q, T8X, T62, TdY, T94, T99, T5F, Te3, T8T, T8Y, T5R, TdX, T93; + E T96; + { + E T5o, T8V, T5t, T8W; + { + E T5l, T5n, T5k, T5m; + T5l = cr[WS(rs, 3)]; + T5n = ci[WS(rs, 3)]; + T5k = W[4]; + T5m = W[5]; + T5o = FMA(T5k, T5l, T5m * T5n); + T8V = FNMS(T5m, T5l, T5k * T5n); + } + { + E T5q, T5s, T5p, T5r; + T5q = cr[WS(rs, 35)]; + T5s = ci[WS(rs, 35)]; + T5p = W[68]; + T5r = W[69]; + T5t = FMA(T5p, T5q, T5r * T5s); + T8W = FNMS(T5r, T5q, T5p * T5s); + } + T5u = T5o + T5t; + Te2 = T8V + T8W; + T8Q = T5o - T5t; + T8X = T8V - T8W; + } + { + E T5W, T97, T61, T98; + { + E T5T, T5V, T5S, T5U; + T5T = cr[WS(rs, 11)]; + T5V = ci[WS(rs, 11)]; + T5S = W[20]; + T5U = W[21]; + T5W = FMA(T5S, T5T, T5U * T5V); + T97 = FNMS(T5U, T5T, T5S * T5V); + } + { + E T5Y, T60, T5X, T5Z; + T5Y = cr[WS(rs, 43)]; + T60 = ci[WS(rs, 43)]; + T5X = W[84]; + T5Z = W[85]; + T61 = FMA(T5X, T5Y, T5Z * T60); + T98 = FNMS(T5Z, T5Y, T5X * T60); + } + T62 = T5W + T61; + TdY = T97 + T98; + T94 = T5W - T61; + T99 = T97 - T98; + } + { + E T5z, T8R, T5E, T8S; + { + E T5w, T5y, T5v, T5x; + T5w = cr[WS(rs, 19)]; + T5y = ci[WS(rs, 19)]; + T5v = W[36]; + T5x = W[37]; + T5z = FMA(T5v, T5w, T5x * T5y); + T8R = FNMS(T5x, T5w, T5v * T5y); + } + { + E T5B, T5D, T5A, T5C; + T5B = cr[WS(rs, 51)]; + T5D = ci[WS(rs, 51)]; + T5A = W[100]; + T5C = W[101]; + T5E = FMA(T5A, T5B, T5C * T5D); + T8S = FNMS(T5C, T5B, T5A * T5D); + } + T5F = T5z + T5E; + Te3 = T8R + T8S; + T8T = T8R - T8S; + T8Y = T5z - T5E; + } + { + E T5L, T91, T5Q, T92; + { + E T5I, T5K, T5H, T5J; + T5I = cr[WS(rs, 59)]; + T5K = ci[WS(rs, 59)]; + T5H = W[116]; + T5J = W[117]; + T5L = FMA(T5H, T5I, T5J * T5K); + T91 = FNMS(T5J, T5I, T5H * T5K); + } + { + E T5N, T5P, T5M, T5O; + T5N = cr[WS(rs, 27)]; + T5P = ci[WS(rs, 27)]; + T5M = W[52]; + T5O = W[53]; + T5Q = FMA(T5M, T5N, T5O * T5P); + T92 = FNMS(T5O, T5N, T5M * T5P); + } + T5R = T5L + T5Q; + TdX = T91 + T92; + T93 = T91 - T92; + T96 = T5L - T5Q; + } + { + E T5G, T63, Te1, Te4; + T5G = T5u + T5F; + T63 = T5R + T62; + T64 = T5G + T63; + TfZ = T5G - T63; + Te1 = T5u - T5F; + Te4 = Te2 - Te3; + Te5 = Te1 - Te4; + Ted = Te1 + Te4; + } + { + E TfS, TfT, T8U, T8Z; + TfS = TdX + TdY; + TfT = Te2 + Te3; + TfU = TfS - TfT; + Tgz = TfT + TfS; + T8U = T8Q - T8T; + T8Z = T8X + T8Y; + T90 = FNMS(KP382683432, T8Z, KP923879532 * T8U); + T9n = FMA(KP923879532, T8Z, KP382683432 * T8U); + } + { + E T95, T9a, Tbr, Tbs; + T95 = T93 + T94; + T9a = T96 - T99; + T9b = FMA(KP382683432, T95, KP923879532 * T9a); + T9o = FNMS(KP382683432, T9a, KP923879532 * T95); + Tbr = T96 + T99; + Tbs = T93 - T94; + Tbt = FNMS(KP382683432, Tbs, KP923879532 * Tbr); + TbA = FMA(KP923879532, Tbs, KP382683432 * Tbr); + } + { + E TdW, TdZ, Tbo, Tbp; + TdW = T5R - T62; + TdZ = TdX - TdY; + Te0 = TdW + TdZ; + Tee = TdZ - TdW; + Tbo = T8X - T8Y; + Tbp = T8Q + T8T; + Tbq = FMA(KP382683432, Tbo, KP923879532 * Tbp); + Tbz = FNMS(KP382683432, Tbp, KP923879532 * Tbo); + } + } + { + E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq; + E TgM; + { + E TH, T1s, TgI, TgJ; + TH = Tj + TG; + T1s = T14 + T1r; + T1t = TH + T1s; + Tgn = TH - T1s; + TgI = Tgy + Tgz; + TgJ = Tgt + Tgu; + TgK = TgI - TgJ; + TgL = TgJ + TgI; + } + { + E TgN, TgU, T2e, T2Z; + TgN = Tfr + Tfq; + TgU = TgO + TgT; + TgV = TgN + TgU; + Th1 = TgU - TgN; + T2e = T1Q + T2d; + T2Z = T2B + T2Y; + T30 = T2e + T2Z; + Th0 = T2e - T2Z; + } + { + E T4y, T65, Tgs, Tgv; + T4y = T3M + T4x; + T65 = T5j + T64; + T66 = T4y + T65; + TgX = T65 - T4y; + Tgs = T3M - T4x; + Tgv = Tgt - Tgu; + Tgw = Tgs + Tgv; + TgE = Tgs - Tgv; + } + { + E Tgx, TgA, Tgo, Tgp; + Tgx = T5j - T64; + TgA = Tgy - Tgz; + TgB = Tgx - TgA; + TgF = Tgx + TgA; + Tgo = TfA + TfB; + Tgp = Tfv + Tfw; + Tgq = Tgo - Tgp; + TgM = Tgp + Tgo; + } + { + E T31, TgW, TgY, TgH; + T31 = T1t + T30; + ci[WS(rs, 31)] = T31 - T66; + cr[0] = T31 + T66; + TgW = TgM + TgV; + cr[WS(rs, 32)] = TgL - TgW; + ci[WS(rs, 63)] = TgL + TgW; + TgY = TgV - TgM; + cr[WS(rs, 48)] = TgX - TgY; + ci[WS(rs, 47)] = TgX + TgY; + TgH = T1t - T30; + cr[WS(rs, 16)] = TgH - TgK; + ci[WS(rs, 15)] = TgH + TgK; + } + { + E Tgr, TgC, TgZ, Th2; + Tgr = Tgn - Tgq; + TgC = KP707106781 * (Tgw + TgB); + ci[WS(rs, 23)] = Tgr - TgC; + cr[WS(rs, 8)] = Tgr + TgC; + TgZ = KP707106781 * (TgB - Tgw); + Th2 = Th0 + Th1; + cr[WS(rs, 56)] = TgZ - Th2; + ci[WS(rs, 39)] = TgZ + Th2; + } + { + E Th3, Th4, TgD, TgG; + Th3 = KP707106781 * (TgF - TgE); + Th4 = Th1 - Th0; + cr[WS(rs, 40)] = Th3 - Th4; + ci[WS(rs, 55)] = Th3 + Th4; + TgD = Tgn + Tgq; + TgG = KP707106781 * (TgE + TgF); + cr[WS(rs, 24)] = TgD - TgG; + ci[WS(rs, 7)] = TgD + TgG; + } + } + { + E T6L, T9x, ThV, Ti1, T7E, Ti0, T9A, ThO, T8y, T9K, T9u, T9E, T9r, T9L, T9v; + E T9H; + { + E T6n, T6K, ThP, ThU; + T6n = T6b + T6m; + T6K = T6y + T6J; + T6L = T6n - T6K; + T9x = T6n + T6K; + ThP = T9O - T9P; + ThU = ThQ + ThT; + ThV = ThP + ThU; + Ti1 = ThU - ThP; + } + { + E T7c, T9y, T7D, T9z; + { + E T72, T7b, T7t, T7C; + T72 = T6Q + T71; + T7b = T77 + T7a; + T7c = FMA(KP195090322, T72, KP980785280 * T7b); + T9y = FNMS(KP195090322, T7b, KP980785280 * T72); + T7t = T7h + T7s; + T7C = T7y + T7B; + T7D = FNMS(KP980785280, T7C, KP195090322 * T7t); + T9z = FMA(KP980785280, T7t, KP195090322 * T7C); + } + T7E = T7c + T7D; + Ti0 = T9z - T9y; + T9A = T9y + T9z; + ThO = T7c - T7D; + } + { + E T8k, T9D, T8x, T9C; + { + E T7W, T8j, T8t, T8w; + T7W = T7K + T7V; + T8j = T87 + T8i; + T8k = T7W - T8j; + T9D = T7W + T8j; + T8t = T8p + T8s; + T8w = T8u + T8v; + T8x = T8t - T8w; + T9C = T8t + T8w; + } + T8y = FMA(KP634393284, T8k, KP773010453 * T8x); + T9K = FMA(KP995184726, T9D, KP098017140 * T9C); + T9u = FNMS(KP773010453, T8k, KP634393284 * T8x); + T9E = FNMS(KP098017140, T9D, KP995184726 * T9C); + } + { + E T9d, T9G, T9q, T9F; + { + E T8P, T9c, T9m, T9p; + T8P = T8D + T8O; + T9c = T90 + T9b; + T9d = T8P - T9c; + T9G = T8P + T9c; + T9m = T9i + T9l; + T9p = T9n + T9o; + T9q = T9m - T9p; + T9F = T9m + T9p; + } + T9r = FNMS(KP634393284, T9q, KP773010453 * T9d); + T9L = FNMS(KP995184726, T9F, KP098017140 * T9G); + T9v = FMA(KP773010453, T9q, KP634393284 * T9d); + T9H = FMA(KP098017140, T9F, KP995184726 * T9G); + } + { + E T7F, T9s, ThZ, Ti2; + T7F = T6L + T7E; + T9s = T8y + T9r; + ci[WS(rs, 24)] = T7F - T9s; + cr[WS(rs, 7)] = T7F + T9s; + ThZ = T9v - T9u; + Ti2 = Ti0 + Ti1; + cr[WS(rs, 39)] = ThZ - Ti2; + ci[WS(rs, 56)] = ThZ + Ti2; + } + { + E Ti3, Ti4, T9t, T9w; + Ti3 = T9r - T8y; + Ti4 = Ti1 - Ti0; + cr[WS(rs, 55)] = Ti3 - Ti4; + ci[WS(rs, 40)] = Ti3 + Ti4; + T9t = T6L - T7E; + T9w = T9u + T9v; + cr[WS(rs, 23)] = T9t - T9w; + ci[WS(rs, 8)] = T9t + T9w; + } + { + E T9B, T9I, ThN, ThW; + T9B = T9x + T9A; + T9I = T9E + T9H; + cr[WS(rs, 31)] = T9B - T9I; + ci[0] = T9B + T9I; + ThN = T9L - T9K; + ThW = ThO + ThV; + cr[WS(rs, 63)] = ThN - ThW; + ci[WS(rs, 32)] = ThN + ThW; + } + { + E ThX, ThY, T9J, T9M; + ThX = T9H - T9E; + ThY = ThV - ThO; + cr[WS(rs, 47)] = ThX - ThY; + ci[WS(rs, 48)] = ThX + ThY; + T9J = T9x - T9A; + T9M = T9K + T9L; + ci[WS(rs, 16)] = T9J - T9M; + cr[WS(rs, 15)] = T9J + T9M; + } + } + { + E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1; + E Tg5; + { + E Tfp, Tfs, Tgf, Tgg; + Tfp = Tj - TG; + Tfs = Tfq - Tfr; + Tft = Tfp - Tfs; + Tg7 = Tfp + Tfs; + Tgf = TfY + TfZ; + Tgg = TfR + TfU; + Tgh = FMA(KP382683432, Tgf, KP923879532 * Tgg); + Tgl = FNMS(KP923879532, Tgf, KP382683432 * Tgg); + } + { + E Th7, Th8, Tfy, TfD; + Th7 = T14 - T1r; + Th8 = TgT - TgO; + Th9 = Th7 + Th8; + Thf = Th8 - Th7; + Tfy = Tfu + Tfx; + TfD = Tfz - TfC; + TfE = KP707106781 * (Tfy + TfD); + Th6 = KP707106781 * (Tfy - TfD); + } + { + E TfK, TfP, Tg8, Tg9; + TfK = TfI - TfJ; + TfP = TfL - TfO; + TfQ = FMA(KP382683432, TfK, KP923879532 * TfP); + Tg4 = FNMS(KP923879532, TfK, KP382683432 * TfP); + Tg8 = Tfu - Tfx; + Tg9 = Tfz + TfC; + Tga = KP707106781 * (Tg8 + Tg9); + The = KP707106781 * (Tg9 - Tg8); + } + { + E Tgc, Tgd, TfV, Tg0; + Tgc = TfL + TfO; + Tgd = TfI + TfJ; + Tge = FNMS(KP382683432, Tgd, KP923879532 * Tgc); + Tgk = FMA(KP923879532, Tgd, KP382683432 * Tgc); + TfV = TfR - TfU; + Tg0 = TfY - TfZ; + Tg1 = FNMS(KP382683432, Tg0, KP923879532 * TfV); + Tg5 = FMA(KP923879532, Tg0, KP382683432 * TfV); + } + { + E TfF, Tg2, Thd, Thg; + TfF = Tft + TfE; + Tg2 = TfQ + Tg1; + ci[WS(rs, 27)] = TfF - Tg2; + cr[WS(rs, 4)] = TfF + Tg2; + Thd = Tg5 - Tg4; + Thg = The + Thf; + cr[WS(rs, 36)] = Thd - Thg; + ci[WS(rs, 59)] = Thd + Thg; + } + { + E Thh, Thi, Tg3, Tg6; + Thh = Tg1 - TfQ; + Thi = Thf - The; + cr[WS(rs, 52)] = Thh - Thi; + ci[WS(rs, 43)] = Thh + Thi; + Tg3 = Tft - TfE; + Tg6 = Tg4 + Tg5; + cr[WS(rs, 20)] = Tg3 - Tg6; + ci[WS(rs, 11)] = Tg3 + Tg6; + } + { + E Tgb, Tgi, Th5, Tha; + Tgb = Tg7 + Tga; + Tgi = Tge + Tgh; + cr[WS(rs, 28)] = Tgb - Tgi; + ci[WS(rs, 3)] = Tgb + Tgi; + Th5 = Tgl - Tgk; + Tha = Th6 + Th9; + cr[WS(rs, 60)] = Th5 - Tha; + ci[WS(rs, 35)] = Th5 + Tha; + } + { + E Thb, Thc, Tgj, Tgm; + Thb = Tgh - Tge; + Thc = Th9 - Th6; + cr[WS(rs, 44)] = Thb - Thc; + ci[WS(rs, 51)] = Thb + Thc; + Tgj = Tg7 - Tga; + Tgm = Tgk + Tgl; + ci[WS(rs, 19)] = Tgj - Tgm; + cr[WS(rs, 12)] = Tgj + Tgm; + } + } + { + E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6; + E Tfg; + { + E TeD, TeG, Tfa, Tfb; + TeD = TcL + TcO; + TeG = KP707106781 * (TeE + TeF); + TeH = TeD - TeG; + Tf9 = TeD + TeG; + { + E TeK, TeN, Thl, Tho; + TeK = FMA(KP923879532, TeI, KP382683432 * TeJ); + TeN = FNMS(KP923879532, TeM, KP382683432 * TeL); + TeO = TeK + TeN; + Thk = TeK - TeN; + Thl = KP707106781 * (TcU - TcZ); + Tho = Thm + Thn; + Thp = Thl + Tho; + Thv = Tho - Thl; + } + Tfa = FNMS(KP382683432, TeI, KP923879532 * TeJ); + Tfb = FMA(KP382683432, TeM, KP923879532 * TeL); + Tfc = Tfa + Tfb; + Thu = Tfb - Tfa; + { + E TeZ, Tfh, Tf2, Tfi, TeY, Tf1; + TeY = KP707106781 * (Te5 + Te0); + TeZ = TeX - TeY; + Tfh = TeX + TeY; + Tf1 = KP707106781 * (Ted + Tee); + Tf2 = Tf0 - Tf1; + Tfi = Tf0 + Tf1; + Tf3 = FNMS(KP555570233, Tf2, KP831469612 * TeZ); + Tfn = FMA(KP980785280, Tfh, KP195090322 * Tfi); + Tf7 = FMA(KP555570233, TeZ, KP831469612 * Tf2); + Tfj = FNMS(KP980785280, Tfi, KP195090322 * Tfh); + } + { + E TeS, Tfe, TeV, Tff, TeR, TeU; + TeR = KP707106781 * (TdN + TdM); + TeS = TeQ - TeR; + Tfe = TeQ + TeR; + TeU = KP707106781 * (Tdz + TdE); + TeV = TeT - TeU; + Tff = TeT + TeU; + TeW = FMA(KP831469612, TeS, KP555570233 * TeV); + Tfm = FNMS(KP195090322, Tff, KP980785280 * Tfe); + Tf6 = FNMS(KP831469612, TeV, KP555570233 * TeS); + Tfg = FMA(KP195090322, Tfe, KP980785280 * Tff); + } + } + { + E TeP, Tf4, Tht, Thw; + TeP = TeH + TeO; + Tf4 = TeW + Tf3; + ci[WS(rs, 25)] = TeP - Tf4; + cr[WS(rs, 6)] = TeP + Tf4; + Tht = Tf7 - Tf6; + Thw = Thu + Thv; + cr[WS(rs, 38)] = Tht - Thw; + ci[WS(rs, 57)] = Tht + Thw; + } + { + E Thx, Thy, Tf5, Tf8; + Thx = Tf3 - TeW; + Thy = Thv - Thu; + cr[WS(rs, 54)] = Thx - Thy; + ci[WS(rs, 41)] = Thx + Thy; + Tf5 = TeH - TeO; + Tf8 = Tf6 + Tf7; + cr[WS(rs, 22)] = Tf5 - Tf8; + ci[WS(rs, 9)] = Tf5 + Tf8; + } + { + E Tfd, Tfk, Thj, Thq; + Tfd = Tf9 - Tfc; + Tfk = Tfg + Tfj; + ci[WS(rs, 17)] = Tfd - Tfk; + cr[WS(rs, 14)] = Tfd + Tfk; + Thj = Tfj - Tfg; + Thq = Thk + Thp; + cr[WS(rs, 62)] = Thj - Thq; + ci[WS(rs, 33)] = Thj + Thq; + } + { + E Thr, Ths, Tfl, Tfo; + Thr = Tfn - Tfm; + Ths = Thp - Thk; + cr[WS(rs, 46)] = Thr - Ths; + ci[WS(rs, 49)] = Thr + Ths; + Tfl = Tf9 + Tfc; + Tfo = Tfm + Tfn; + cr[WS(rs, 30)] = Tfl - Tfo; + ci[WS(rs, 1)] = Tfl + Tfo; + } + } + { + E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek; + E Teu; + { + E TcP, Td0, Teo, Tep; + TcP = TcL - TcO; + Td0 = KP707106781 * (TcU + TcZ); + Td1 = TcP - Td0; + Ten = TcP + Td0; + { + E Tdc, Tdn, ThB, ThC; + Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6); + Tdn = FMA(KP923879532, Tdh, KP382683432 * Tdm); + Tdo = Tdc + Tdn; + ThA = Tdn - Tdc; + ThB = KP707106781 * (TeF - TeE); + ThC = Thn - Thm; + ThD = ThB + ThC; + ThJ = ThC - ThB; + } + Teo = FMA(KP382683432, Tdb, KP923879532 * Td6); + Tep = FNMS(KP382683432, Tdh, KP923879532 * Tdm); + Teq = Teo + Tep; + ThI = Teo - Tep; + { + E Te7, Tew, Teg, Tev, Te6, Tef; + Te6 = KP707106781 * (Te0 - Te5); + Te7 = TdV - Te6; + Tew = TdV + Te6; + Tef = KP707106781 * (Ted - Tee); + Teg = Tec - Tef; + Tev = Tec + Tef; + Teh = FMA(KP555570233, Te7, KP831469612 * Teg); + TeB = FMA(KP980785280, Tew, KP195090322 * Tev); + Tel = FNMS(KP831469612, Te7, KP555570233 * Teg); + Tex = FNMS(KP195090322, Tew, KP980785280 * Tev); + } + { + E TdG, Tet, TdP, Tes, TdF, TdO; + TdF = KP707106781 * (Tdz - TdE); + TdG = Tdu - TdF; + Tet = Tdu + TdF; + TdO = KP707106781 * (TdM - TdN); + TdP = TdL - TdO; + Tes = TdL + TdO; + TdQ = FNMS(KP555570233, TdP, KP831469612 * TdG); + TeA = FNMS(KP980785280, Tes, KP195090322 * Tet); + Tek = FMA(KP831469612, TdP, KP555570233 * TdG); + Teu = FMA(KP195090322, Tes, KP980785280 * Tet); + } + } + { + E Tdp, Tei, ThH, ThK; + Tdp = Td1 + Tdo; + Tei = TdQ + Teh; + cr[WS(rs, 26)] = Tdp - Tei; + ci[WS(rs, 5)] = Tdp + Tei; + ThH = Tel - Tek; + ThK = ThI + ThJ; + cr[WS(rs, 58)] = ThH - ThK; + ci[WS(rs, 37)] = ThH + ThK; + } + { + E ThL, ThM, Tej, Tem; + ThL = Teh - TdQ; + ThM = ThJ - ThI; + cr[WS(rs, 42)] = ThL - ThM; + ci[WS(rs, 53)] = ThL + ThM; + Tej = Td1 - Tdo; + Tem = Tek + Tel; + ci[WS(rs, 21)] = Tej - Tem; + cr[WS(rs, 10)] = Tej + Tem; + } + { + E Ter, Tey, Thz, ThE; + Ter = Ten + Teq; + Tey = Teu + Tex; + ci[WS(rs, 29)] = Ter - Tey; + cr[WS(rs, 2)] = Ter + Tey; + Thz = TeB - TeA; + ThE = ThA + ThD; + cr[WS(rs, 34)] = Thz - ThE; + ci[WS(rs, 61)] = Thz + ThE; + } + { + E ThF, ThG, Tez, TeC; + ThF = Tex - Teu; + ThG = ThD - ThA; + cr[WS(rs, 50)] = ThF - ThG; + ci[WS(rs, 45)] = ThF + ThG; + Tez = Ten - Teq; + TeC = TeA + TeB; + cr[WS(rs, 18)] = Tez - TeC; + ci[WS(rs, 13)] = Tez + TeC; + } + } + { + E Tc3, Tcv, TiD, TiJ, Tca, TiI, Tcy, TiA, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct; + E TcF; + { + E TbZ, Tc2, TiB, TiC; + TbZ = Taz - TaC; + Tc2 = Tc0 + Tc1; + Tc3 = TbZ - Tc2; + Tcv = TbZ + Tc2; + TiB = TaG - TaJ; + TiC = Tin - Tim; + TiD = TiB + TiC; + TiJ = TiC - TiB; + } + { + E Tc6, Tcw, Tc9, Tcx; + { + E Tc4, Tc5, Tc7, Tc8; + Tc4 = TaP - TaQ; + Tc5 = TaM - TaN; + Tc6 = FMA(KP831469612, Tc4, KP555570233 * Tc5); + Tcw = FNMS(KP555570233, Tc4, KP831469612 * Tc5); + Tc7 = TaW - TaX; + Tc8 = TaT - TaU; + Tc9 = FNMS(KP831469612, Tc8, KP555570233 * Tc7); + Tcx = FMA(KP555570233, Tc8, KP831469612 * Tc7); + } + Tca = Tc6 + Tc9; + TiI = Tcx - Tcw; + Tcy = Tcw + Tcx; + TiA = Tc6 - Tc9; + } + { + E Tce, TcB, Tch, TcA; + { + E Tcc, Tcd, Tcf, Tcg; + Tcc = Tbd - Tbe; + Tcd = Tb7 - Tba; + Tce = Tcc - Tcd; + TcB = Tcc + Tcd; + Tcf = Tb2 - Tb3; + Tcg = Tbh - Tbg; + Tch = Tcf - Tcg; + TcA = Tcf + Tcg; + } + Tci = FMA(KP471396736, Tce, KP881921264 * Tch); + TcI = FMA(KP956940335, TcB, KP290284677 * TcA); + Tcs = FNMS(KP881921264, Tce, KP471396736 * Tch); + TcC = FNMS(KP290284677, TcB, KP956940335 * TcA); + } + { + E Tcl, TcE, Tco, TcD; + { + E Tcj, Tck, Tcm, Tcn; + Tcj = Tbl - Tbm; + Tck = TbA - Tbz; + Tcl = Tcj - Tck; + TcE = Tcj + Tck; + Tcm = Tbw - Tbx; + Tcn = Tbq - Tbt; + Tco = Tcm - Tcn; + TcD = Tcm + Tcn; + } + Tcp = FNMS(KP471396736, Tco, KP881921264 * Tcl); + TcJ = FNMS(KP956940335, TcD, KP290284677 * TcE); + Tct = FMA(KP881921264, Tco, KP471396736 * Tcl); + TcF = FMA(KP290284677, TcD, KP956940335 * TcE); + } + { + E Tcb, Tcq, TiH, TiK; + Tcb = Tc3 + Tca; + Tcq = Tci + Tcp; + ci[WS(rs, 26)] = Tcb - Tcq; + cr[WS(rs, 5)] = Tcb + Tcq; + TiH = Tct - Tcs; + TiK = TiI + TiJ; + cr[WS(rs, 37)] = TiH - TiK; + ci[WS(rs, 58)] = TiH + TiK; + } + { + E TiL, TiM, Tcr, Tcu; + TiL = Tcp - Tci; + TiM = TiJ - TiI; + cr[WS(rs, 53)] = TiL - TiM; + ci[WS(rs, 42)] = TiL + TiM; + Tcr = Tc3 - Tca; + Tcu = Tcs + Tct; + cr[WS(rs, 21)] = Tcr - Tcu; + ci[WS(rs, 10)] = Tcr + Tcu; + } + { + E Tcz, TcG, Tiz, TiE; + Tcz = Tcv + Tcy; + TcG = TcC + TcF; + cr[WS(rs, 29)] = Tcz - TcG; + ci[WS(rs, 2)] = Tcz + TcG; + Tiz = TcJ - TcI; + TiE = TiA + TiD; + cr[WS(rs, 61)] = Tiz - TiE; + ci[WS(rs, 34)] = Tiz + TiE; + } + { + E TiF, TiG, TcH, TcK; + TiF = TcF - TcC; + TiG = TiD - TiA; + cr[WS(rs, 45)] = TiF - TiG; + ci[WS(rs, 50)] = TiF + TiG; + TcH = Tcv - Tcy; + TcK = TcI + TcJ; + ci[WS(rs, 18)] = TcH - TcK; + cr[WS(rs, 13)] = TcH + TcK; + } + } + { + E TaL, TbJ, Tip, Tiv, Tb0, Tiu, TbM, Tik, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH; + E TbT; + { + E TaD, TaK, Til, Tio; + TaD = Taz + TaC; + TaK = TaG + TaJ; + TaL = TaD - TaK; + TbJ = TaD + TaK; + Til = Tc1 - Tc0; + Tio = Tim + Tin; + Tip = Til + Tio; + Tiv = Tio - Til; + } + { + E TaS, TbK, TaZ, TbL; + { + E TaO, TaR, TaV, TaY; + TaO = TaM + TaN; + TaR = TaP + TaQ; + TaS = FNMS(KP980785280, TaR, KP195090322 * TaO); + TbK = FMA(KP195090322, TaR, KP980785280 * TaO); + TaV = TaT + TaU; + TaY = TaW + TaX; + TaZ = FMA(KP980785280, TaV, KP195090322 * TaY); + TbL = FNMS(KP195090322, TaV, KP980785280 * TaY); + } + Tb0 = TaS + TaZ; + Tiu = TbK - TbL; + TbM = TbK + TbL; + Tik = TaZ - TaS; + } + { + E Tbc, TbO, Tbj, TbP; + { + E Tb4, Tbb, Tbf, Tbi; + Tb4 = Tb2 + Tb3; + Tbb = Tb7 + Tba; + Tbc = Tb4 - Tbb; + TbO = Tb4 + Tbb; + Tbf = Tbd + Tbe; + Tbi = Tbg + Tbh; + Tbj = Tbf - Tbi; + TbP = Tbf + Tbi; + } + Tbk = FMA(KP634393284, Tbc, KP773010453 * Tbj); + TbW = FNMS(KP995184726, TbP, KP098017140 * TbO); + TbG = FNMS(KP634393284, Tbj, KP773010453 * Tbc); + TbQ = FMA(KP995184726, TbO, KP098017140 * TbP); + } + { + E Tbv, TbR, TbC, TbS; + { + E Tbn, Tbu, Tby, TbB; + Tbn = Tbl + Tbm; + Tbu = Tbq + Tbt; + Tbv = Tbn - Tbu; + TbR = Tbn + Tbu; + Tby = Tbw + Tbx; + TbB = Tbz + TbA; + TbC = Tby - TbB; + TbS = Tby + TbB; + } + TbD = FNMS(KP773010453, TbC, KP634393284 * Tbv); + TbX = FMA(KP098017140, TbR, KP995184726 * TbS); + TbH = FMA(KP773010453, Tbv, KP634393284 * TbC); + TbT = FNMS(KP098017140, TbS, KP995184726 * TbR); + } + { + E Tb1, TbE, Tit, Tiw; + Tb1 = TaL - Tb0; + TbE = Tbk + TbD; + ci[WS(rs, 22)] = Tb1 - TbE; + cr[WS(rs, 9)] = Tb1 + TbE; + Tit = TbD - Tbk; + Tiw = Tiu + Tiv; + cr[WS(rs, 57)] = Tit - Tiw; + ci[WS(rs, 38)] = Tit + Tiw; + } + { + E Tix, Tiy, TbF, TbI; + Tix = TbH - TbG; + Tiy = Tiv - Tiu; + cr[WS(rs, 41)] = Tix - Tiy; + ci[WS(rs, 54)] = Tix + Tiy; + TbF = TaL + Tb0; + TbI = TbG + TbH; + cr[WS(rs, 25)] = TbF - TbI; + ci[WS(rs, 6)] = TbF + TbI; + } + { + E TbN, TbU, Tij, Tiq; + TbN = TbJ + TbM; + TbU = TbQ + TbT; + ci[WS(rs, 30)] = TbN - TbU; + cr[WS(rs, 1)] = TbN + TbU; + Tij = TbX - TbW; + Tiq = Tik + Tip; + cr[WS(rs, 33)] = Tij - Tiq; + ci[WS(rs, 62)] = Tij + Tiq; + } + { + E Tir, Tis, TbV, TbY; + Tir = TbT - TbQ; + Tis = Tip - Tik; + cr[WS(rs, 49)] = Tir - Tis; + ci[WS(rs, 46)] = Tir + Tis; + TbV = TbJ - TbM; + TbY = TbW + TbX; + cr[WS(rs, 17)] = TbV - TbY; + ci[WS(rs, 14)] = TbV + TbY; + } + } + { + E T9R, Taj, Ti9, Tif, T9Y, Tie, Tam, Ti6, Ta6, Taw, Tag, Taq, Tad, Tax, Tah; + E Tat; + { + E T9N, T9Q, Ti7, Ti8; + T9N = T6b - T6m; + T9Q = T9O + T9P; + T9R = T9N - T9Q; + Taj = T9N + T9Q; + Ti7 = T6J - T6y; + Ti8 = ThT - ThQ; + Ti9 = Ti7 + Ti8; + Tif = Ti8 - Ti7; + } + { + E T9U, Tak, T9X, Tal; + { + E T9S, T9T, T9V, T9W; + T9S = T6Q - T71; + T9T = T77 - T7a; + T9U = FNMS(KP831469612, T9T, KP555570233 * T9S); + Tak = FMA(KP831469612, T9S, KP555570233 * T9T); + T9V = T7h - T7s; + T9W = T7y - T7B; + T9X = FMA(KP555570233, T9V, KP831469612 * T9W); + Tal = FNMS(KP555570233, T9W, KP831469612 * T9V); + } + T9Y = T9U + T9X; + Tie = Tak - Tal; + Tam = Tak + Tal; + Ti6 = T9X - T9U; + } + { + E Ta2, Tao, Ta5, Tap; + { + E Ta0, Ta1, Ta3, Ta4; + Ta0 = T8p - T8s; + Ta1 = T87 - T8i; + Ta2 = Ta0 - Ta1; + Tao = Ta0 + Ta1; + Ta3 = T7K - T7V; + Ta4 = T8v - T8u; + Ta5 = Ta3 - Ta4; + Tap = Ta3 + Ta4; + } + Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5); + Taw = FNMS(KP956940335, Tap, KP290284677 * Tao); + Tag = FNMS(KP471396736, Ta5, KP881921264 * Ta2); + Taq = FMA(KP956940335, Tao, KP290284677 * Tap); + } + { + E Ta9, Tar, Tac, Tas; + { + E Ta7, Ta8, Taa, Tab; + Ta7 = T8D - T8O; + Ta8 = T9n - T9o; + Ta9 = Ta7 - Ta8; + Tar = Ta7 + Ta8; + Taa = T9i - T9l; + Tab = T9b - T90; + Tac = Taa - Tab; + Tas = Taa + Tab; + } + Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9); + Tax = FMA(KP290284677, Tar, KP956940335 * Tas); + Tah = FMA(KP881921264, Ta9, KP471396736 * Tac); + Tat = FNMS(KP290284677, Tas, KP956940335 * Tar); + } + { + E T9Z, Tae, Tid, Tig; + T9Z = T9R - T9Y; + Tae = Ta6 + Tad; + ci[WS(rs, 20)] = T9Z - Tae; + cr[WS(rs, 11)] = T9Z + Tae; + Tid = Tad - Ta6; + Tig = Tie + Tif; + cr[WS(rs, 59)] = Tid - Tig; + ci[WS(rs, 36)] = Tid + Tig; + } + { + E Tih, Tii, Taf, Tai; + Tih = Tah - Tag; + Tii = Tif - Tie; + cr[WS(rs, 43)] = Tih - Tii; + ci[WS(rs, 52)] = Tih + Tii; + Taf = T9R + T9Y; + Tai = Tag + Tah; + cr[WS(rs, 27)] = Taf - Tai; + ci[WS(rs, 4)] = Taf + Tai; + } + { + E Tan, Tau, Ti5, Tia; + Tan = Taj + Tam; + Tau = Taq + Tat; + ci[WS(rs, 28)] = Tan - Tau; + cr[WS(rs, 3)] = Tan + Tau; + Ti5 = Tax - Taw; + Tia = Ti6 + Ti9; + cr[WS(rs, 35)] = Ti5 - Tia; + ci[WS(rs, 60)] = Ti5 + Tia; + } + { + E Tib, Tic, Tav, Tay; + Tib = Tat - Taq; + Tic = Ti9 - Ti6; + cr[WS(rs, 51)] = Tib - Tic; + ci[WS(rs, 44)] = Tib + Tic; + Tav = Taj - Tam; + Tay = Taw + Tax; + cr[WS(rs, 19)] = Tav - Tay; + ci[WS(rs, 12)] = Tav + Tay; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 64}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 64, "hf_64", twinstr, &GENUS, {808, 270, 230, 0} }; + +void X(codelet_hf_64) (planner *p) { + X(khc2hc_register) (p, hf_64, &desc); +} +#endif