Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cf/hf2_5.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cf/hf2_5.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,264 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:06:37 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -dit -name hf2_5 -include rdft/scalar/hf.h */ + +/* + * This function contains 44 FP additions, 40 FP multiplications, + * (or, 14 additions, 10 multiplications, 30 fused multiply/add), + * 38 stack variables, 4 constants, and 20 memory accesses + */ +#include "rdft/scalar/hf.h" + +static void hf2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { + E T2, Ta, T8, T5, Tb, Tm, Tf, Tj, T9, Te; + T2 = W[0]; + Ta = W[3]; + T8 = W[2]; + T9 = T2 * T8; + Te = T2 * Ta; + T5 = W[1]; + Tb = FNMS(T5, Ta, T9); + Tm = FNMS(T5, T8, Te); + Tf = FMA(T5, T8, Te); + Tj = FMA(T5, Ta, T9); + { + E T1, TL, T7, Th, Ti, Tz, TB, TM, To, Ts, Tt, TE, TG, TN; + T1 = cr[0]; + TL = ci[0]; + { + E T3, T4, T6, Ty, Tc, Td, Tg, TA; + T3 = cr[WS(rs, 1)]; + T4 = T2 * T3; + T6 = ci[WS(rs, 1)]; + Ty = T2 * T6; + Tc = cr[WS(rs, 4)]; + Td = Tb * Tc; + Tg = ci[WS(rs, 4)]; + TA = Tb * Tg; + T7 = FMA(T5, T6, T4); + Th = FMA(Tf, Tg, Td); + Ti = T7 + Th; + Tz = FNMS(T5, T3, Ty); + TB = FNMS(Tf, Tc, TA); + TM = Tz + TB; + } + { + E Tk, Tl, Tn, TD, Tp, Tq, Tr, TF; + Tk = cr[WS(rs, 2)]; + Tl = Tj * Tk; + Tn = ci[WS(rs, 2)]; + TD = Tj * Tn; + Tp = cr[WS(rs, 3)]; + Tq = T8 * Tp; + Tr = ci[WS(rs, 3)]; + TF = T8 * Tr; + To = FMA(Tm, Tn, Tl); + Ts = FMA(Ta, Tr, Tq); + Tt = To + Ts; + TE = FNMS(Tm, Tk, TD); + TG = FNMS(Ta, Tp, TF); + TN = TE + TG; + } + { + E Tw, Tu, Tv, TI, TK, TC, TH, Tx, TJ; + Tw = Ti - Tt; + Tu = Ti + Tt; + Tv = FNMS(KP250000000, Tu, T1); + TC = Tz - TB; + TH = TE - TG; + TI = FMA(KP618033988, TH, TC); + TK = FNMS(KP618033988, TC, TH); + cr[0] = T1 + Tu; + Tx = FMA(KP559016994, Tw, Tv); + ci[0] = FNMS(KP951056516, TI, Tx); + cr[WS(rs, 1)] = FMA(KP951056516, TI, Tx); + TJ = FNMS(KP559016994, Tw, Tv); + cr[WS(rs, 2)] = FNMS(KP951056516, TK, TJ); + ci[WS(rs, 1)] = FMA(KP951056516, TK, TJ); + } + { + E TQ, TO, TP, TU, TW, TS, TT, TV, TR; + TQ = TM - TN; + TO = TM + TN; + TP = FNMS(KP250000000, TO, TL); + TS = To - Ts; + TT = Th - T7; + TU = FMA(KP618033988, TT, TS); + TW = FNMS(KP618033988, TS, TT); + ci[WS(rs, 4)] = TO + TL; + TV = FMA(KP559016994, TQ, TP); + cr[WS(rs, 4)] = FMS(KP951056516, TW, TV); + ci[WS(rs, 3)] = FMA(KP951056516, TW, TV); + TR = FNMS(KP559016994, TQ, TP); + cr[WS(rs, 3)] = FMS(KP951056516, TU, TR); + ci[WS(rs, 2)] = FMA(KP951056516, TU, TR); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 1, 1}, + {TW_CEXP, 1, 3}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 5, "hf2_5", twinstr, &GENUS, {14, 10, 30, 0} }; + +void X(codelet_hf2_5) (planner *p) { + X(khc2hc_register) (p, hf2_5, &desc); +} +#else + +/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -dit -name hf2_5 -include rdft/scalar/hf.h */ + +/* + * This function contains 44 FP additions, 32 FP multiplications, + * (or, 30 additions, 18 multiplications, 14 fused multiply/add), + * 37 stack variables, 4 constants, and 20 memory accesses + */ +#include "rdft/scalar/hf.h" + +static void hf2_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) { + E T2, T4, T7, T9, Tb, Tl, Tf, Tj; + { + E T8, Te, Ta, Td; + T2 = W[0]; + T4 = W[1]; + T7 = W[2]; + T9 = W[3]; + T8 = T2 * T7; + Te = T4 * T7; + Ta = T4 * T9; + Td = T2 * T9; + Tb = T8 - Ta; + Tl = Td - Te; + Tf = Td + Te; + Tj = T8 + Ta; + } + { + E T1, TI, Ty, TB, TG, TF, TJ, TK, TL, Ti, Tr, Ts; + T1 = cr[0]; + TI = ci[0]; + { + E T6, Tw, Tq, TA, Th, Tx, Tn, Tz; + { + E T3, T5, To, Tp; + T3 = cr[WS(rs, 1)]; + T5 = ci[WS(rs, 1)]; + T6 = FMA(T2, T3, T4 * T5); + Tw = FNMS(T4, T3, T2 * T5); + To = cr[WS(rs, 3)]; + Tp = ci[WS(rs, 3)]; + Tq = FMA(T7, To, T9 * Tp); + TA = FNMS(T9, To, T7 * Tp); + } + { + E Tc, Tg, Tk, Tm; + Tc = cr[WS(rs, 4)]; + Tg = ci[WS(rs, 4)]; + Th = FMA(Tb, Tc, Tf * Tg); + Tx = FNMS(Tf, Tc, Tb * Tg); + Tk = cr[WS(rs, 2)]; + Tm = ci[WS(rs, 2)]; + Tn = FMA(Tj, Tk, Tl * Tm); + Tz = FNMS(Tl, Tk, Tj * Tm); + } + Ty = Tw - Tx; + TB = Tz - TA; + TG = Tn - Tq; + TF = Th - T6; + TJ = Tw + Tx; + TK = Tz + TA; + TL = TJ + TK; + Ti = T6 + Th; + Tr = Tn + Tq; + Ts = Ti + Tr; + } + cr[0] = T1 + Ts; + { + E TC, TE, Tv, TD, Tt, Tu; + TC = FMA(KP951056516, Ty, KP587785252 * TB); + TE = FNMS(KP587785252, Ty, KP951056516 * TB); + Tt = KP559016994 * (Ti - Tr); + Tu = FNMS(KP250000000, Ts, T1); + Tv = Tt + Tu; + TD = Tu - Tt; + ci[0] = Tv - TC; + ci[WS(rs, 1)] = TD + TE; + cr[WS(rs, 1)] = Tv + TC; + cr[WS(rs, 2)] = TD - TE; + } + ci[WS(rs, 4)] = TL + TI; + { + E TH, TP, TO, TQ, TM, TN; + TH = FMA(KP587785252, TF, KP951056516 * TG); + TP = FNMS(KP587785252, TG, KP951056516 * TF); + TM = FNMS(KP250000000, TL, TI); + TN = KP559016994 * (TJ - TK); + TO = TM - TN; + TQ = TN + TM; + cr[WS(rs, 3)] = TH - TO; + ci[WS(rs, 3)] = TP + TQ; + ci[WS(rs, 2)] = TH + TO; + cr[WS(rs, 4)] = TP - TQ; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 1, 1}, + {TW_CEXP, 1, 3}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 5, "hf2_5", twinstr, &GENUS, {30, 18, 14, 0} }; + +void X(codelet_hf2_5) (planner *p) { + X(khc2hc_register) (p, hf2_5, &desc); +} +#endif