Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cf/hc2cf_16.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cf/hc2cf_16.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,796 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:06:57 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hc2cf_16 -include rdft/scalar/hc2cf.h */ + +/* + * This function contains 174 FP additions, 100 FP multiplications, + * (or, 104 additions, 30 multiplications, 70 fused multiply/add), + * 60 stack variables, 3 constants, and 64 memory accesses + */ +#include "rdft/scalar/hc2cf.h" + +static void hc2cf_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP414213562, +0.414213562373095048801688724209698078569671875); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { + E T8, T3z, T1I, T3o, T1s, T35, T2p, T2r, T1F, T36, T2k, T2w, Tl, T3A, T1N; + E T3k, Tz, T2V, T1T, T1U, T11, T30, T29, T2c, T1e, T31, T2a, T2h, TM, T2W; + E T1W, T21; + { + E T1, T3n, T3, T6, T4, T3l, T2, T7, T3m, T5; + T1 = Rp[0]; + T3n = Rm[0]; + T3 = Rp[WS(rs, 4)]; + T6 = Rm[WS(rs, 4)]; + T2 = W[14]; + T4 = T2 * T3; + T3l = T2 * T6; + T5 = W[15]; + T7 = FMA(T5, T6, T4); + T3m = FNMS(T5, T3, T3l); + T8 = T1 + T7; + T3z = T3n - T3m; + T1I = T1 - T7; + T3o = T3m + T3n; + } + { + E T1h, T1k, T1i, T2l, T1n, T1q, T1o, T2n, T1g, T1m; + T1h = Ip[WS(rs, 7)]; + T1k = Im[WS(rs, 7)]; + T1g = W[28]; + T1i = T1g * T1h; + T2l = T1g * T1k; + T1n = Ip[WS(rs, 3)]; + T1q = Im[WS(rs, 3)]; + T1m = W[12]; + T1o = T1m * T1n; + T2n = T1m * T1q; + { + E T1l, T2m, T1r, T2o, T1j, T1p; + T1j = W[29]; + T1l = FMA(T1j, T1k, T1i); + T2m = FNMS(T1j, T1h, T2l); + T1p = W[13]; + T1r = FMA(T1p, T1q, T1o); + T2o = FNMS(T1p, T1n, T2n); + T1s = T1l + T1r; + T35 = T2m + T2o; + T2p = T2m - T2o; + T2r = T1l - T1r; + } + } + { + E T1u, T1x, T1v, T2s, T1A, T1D, T1B, T2u, T1t, T1z; + T1u = Ip[WS(rs, 1)]; + T1x = Im[WS(rs, 1)]; + T1t = W[4]; + T1v = T1t * T1u; + T2s = T1t * T1x; + T1A = Ip[WS(rs, 5)]; + T1D = Im[WS(rs, 5)]; + T1z = W[20]; + T1B = T1z * T1A; + T2u = T1z * T1D; + { + E T1y, T2t, T1E, T2v, T1w, T1C; + T1w = W[5]; + T1y = FMA(T1w, T1x, T1v); + T2t = FNMS(T1w, T1u, T2s); + T1C = W[21]; + T1E = FMA(T1C, T1D, T1B); + T2v = FNMS(T1C, T1A, T2u); + T1F = T1y + T1E; + T36 = T2t + T2v; + T2k = T1E - T1y; + T2w = T2t - T2v; + } + } + { + E Ta, Td, Tb, T1J, Tg, Tj, Th, T1L, T9, Tf; + Ta = Rp[WS(rs, 2)]; + Td = Rm[WS(rs, 2)]; + T9 = W[6]; + Tb = T9 * Ta; + T1J = T9 * Td; + Tg = Rp[WS(rs, 6)]; + Tj = Rm[WS(rs, 6)]; + Tf = W[22]; + Th = Tf * Tg; + T1L = Tf * Tj; + { + E Te, T1K, Tk, T1M, Tc, Ti; + Tc = W[7]; + Te = FMA(Tc, Td, Tb); + T1K = FNMS(Tc, Ta, T1J); + Ti = W[23]; + Tk = FMA(Ti, Tj, Th); + T1M = FNMS(Ti, Tg, T1L); + Tl = Te + Tk; + T3A = Te - Tk; + T1N = T1K - T1M; + T3k = T1K + T1M; + } + } + { + E To, Tr, Tp, T1P, Tu, Tx, Tv, T1R, Tn, Tt; + To = Rp[WS(rs, 1)]; + Tr = Rm[WS(rs, 1)]; + Tn = W[2]; + Tp = Tn * To; + T1P = Tn * Tr; + Tu = Rp[WS(rs, 5)]; + Tx = Rm[WS(rs, 5)]; + Tt = W[18]; + Tv = Tt * Tu; + T1R = Tt * Tx; + { + E Ts, T1Q, Ty, T1S, Tq, Tw; + Tq = W[3]; + Ts = FMA(Tq, Tr, Tp); + T1Q = FNMS(Tq, To, T1P); + Tw = W[19]; + Ty = FMA(Tw, Tx, Tv); + T1S = FNMS(Tw, Tu, T1R); + Tz = Ts + Ty; + T2V = T1Q + T1S; + T1T = T1Q - T1S; + T1U = Ts - Ty; + } + } + { + E TQ, TT, TR, T25, TW, TZ, TX, T27, TP, TV; + TQ = Ip[0]; + TT = Im[0]; + TP = W[0]; + TR = TP * TQ; + T25 = TP * TT; + TW = Ip[WS(rs, 4)]; + TZ = Im[WS(rs, 4)]; + TV = W[16]; + TX = TV * TW; + T27 = TV * TZ; + { + E TU, T26, T10, T28, TS, TY; + TS = W[1]; + TU = FMA(TS, TT, TR); + T26 = FNMS(TS, TQ, T25); + TY = W[17]; + T10 = FMA(TY, TZ, TX); + T28 = FNMS(TY, TW, T27); + T11 = TU + T10; + T30 = T26 + T28; + T29 = T26 - T28; + T2c = TU - T10; + } + } + { + E T13, T16, T14, T2d, T19, T1c, T1a, T2f, T12, T18; + T13 = Ip[WS(rs, 2)]; + T16 = Im[WS(rs, 2)]; + T12 = W[8]; + T14 = T12 * T13; + T2d = T12 * T16; + T19 = Ip[WS(rs, 6)]; + T1c = Im[WS(rs, 6)]; + T18 = W[24]; + T1a = T18 * T19; + T2f = T18 * T1c; + { + E T17, T2e, T1d, T2g, T15, T1b; + T15 = W[9]; + T17 = FMA(T15, T16, T14); + T2e = FNMS(T15, T13, T2d); + T1b = W[25]; + T1d = FMA(T1b, T1c, T1a); + T2g = FNMS(T1b, T19, T2f); + T1e = T17 + T1d; + T31 = T2e + T2g; + T2a = T17 - T1d; + T2h = T2e - T2g; + } + } + { + E TB, TE, TC, T1X, TH, TK, TI, T1Z, TA, TG; + TB = Rp[WS(rs, 7)]; + TE = Rm[WS(rs, 7)]; + TA = W[26]; + TC = TA * TB; + T1X = TA * TE; + TH = Rp[WS(rs, 3)]; + TK = Rm[WS(rs, 3)]; + TG = W[10]; + TI = TG * TH; + T1Z = TG * TK; + { + E TF, T1Y, TL, T20, TD, TJ; + TD = W[27]; + TF = FMA(TD, TE, TC); + T1Y = FNMS(TD, TB, T1X); + TJ = W[11]; + TL = FMA(TJ, TK, TI); + T20 = FNMS(TJ, TH, T1Z); + TM = TF + TL; + T2W = T1Y + T20; + T1W = TF - TL; + T21 = T1Y - T20; + } + } + { + E TO, T3e, T3q, T3s, T1H, T3r, T3h, T3i; + { + E Tm, TN, T3j, T3p; + Tm = T8 + Tl; + TN = Tz + TM; + TO = Tm + TN; + T3e = Tm - TN; + T3j = T2V + T2W; + T3p = T3k + T3o; + T3q = T3j + T3p; + T3s = T3p - T3j; + } + { + E T1f, T1G, T3f, T3g; + T1f = T11 + T1e; + T1G = T1s + T1F; + T1H = T1f + T1G; + T3r = T1G - T1f; + T3f = T30 + T31; + T3g = T35 + T36; + T3h = T3f - T3g; + T3i = T3f + T3g; + } + Rm[WS(rs, 7)] = TO - T1H; + Im[WS(rs, 7)] = T3i - T3q; + Rp[0] = TO + T1H; + Ip[0] = T3i + T3q; + Rm[WS(rs, 3)] = T3e - T3h; + Im[WS(rs, 3)] = T3r - T3s; + Rp[WS(rs, 4)] = T3e + T3h; + Ip[WS(rs, 4)] = T3r + T3s; + } + { + E T2Y, T3a, T3v, T3x, T33, T3b, T38, T3c; + { + E T2U, T2X, T3t, T3u; + T2U = T8 - Tl; + T2X = T2V - T2W; + T2Y = T2U + T2X; + T3a = T2U - T2X; + T3t = TM - Tz; + T3u = T3o - T3k; + T3v = T3t + T3u; + T3x = T3u - T3t; + } + { + E T2Z, T32, T34, T37; + T2Z = T11 - T1e; + T32 = T30 - T31; + T33 = T2Z + T32; + T3b = T32 - T2Z; + T34 = T1s - T1F; + T37 = T35 - T36; + T38 = T34 - T37; + T3c = T34 + T37; + } + { + E T39, T3w, T3d, T3y; + T39 = T33 + T38; + Rm[WS(rs, 5)] = FNMS(KP707106781, T39, T2Y); + Rp[WS(rs, 2)] = FMA(KP707106781, T39, T2Y); + T3w = T3b + T3c; + Im[WS(rs, 5)] = FMS(KP707106781, T3w, T3v); + Ip[WS(rs, 2)] = FMA(KP707106781, T3w, T3v); + T3d = T3b - T3c; + Rm[WS(rs, 1)] = FNMS(KP707106781, T3d, T3a); + Rp[WS(rs, 6)] = FMA(KP707106781, T3d, T3a); + T3y = T38 - T33; + Im[WS(rs, 1)] = FMS(KP707106781, T3y, T3x); + Ip[WS(rs, 6)] = FMA(KP707106781, T3y, T3x); + } + } + { + E T1O, T3B, T3H, T2E, T23, T3C, T2O, T2S, T2H, T3I, T2j, T2B, T2L, T2R, T2y; + E T2C; + { + E T1V, T22, T2b, T2i; + T1O = T1I - T1N; + T3B = T3z - T3A; + T3H = T3A + T3z; + T2E = T1I + T1N; + T1V = T1T - T1U; + T22 = T1W + T21; + T23 = T1V - T22; + T3C = T1V + T22; + { + E T2M, T2N, T2F, T2G; + T2M = T2r + T2w; + T2N = T2p + T2k; + T2O = FNMS(KP414213562, T2N, T2M); + T2S = FMA(KP414213562, T2M, T2N); + T2F = T1U + T1T; + T2G = T1W - T21; + T2H = T2F + T2G; + T3I = T2G - T2F; + } + T2b = T29 + T2a; + T2i = T2c - T2h; + T2j = FMA(KP414213562, T2i, T2b); + T2B = FNMS(KP414213562, T2b, T2i); + { + E T2J, T2K, T2q, T2x; + T2J = T2c + T2h; + T2K = T29 - T2a; + T2L = FMA(KP414213562, T2K, T2J); + T2R = FNMS(KP414213562, T2J, T2K); + T2q = T2k - T2p; + T2x = T2r - T2w; + T2y = FMA(KP414213562, T2x, T2q); + T2C = FNMS(KP414213562, T2q, T2x); + } + } + { + E T24, T2z, T3J, T3K; + T24 = FMA(KP707106781, T23, T1O); + T2z = T2j + T2y; + Rm[WS(rs, 4)] = FNMS(KP923879532, T2z, T24); + Rp[WS(rs, 3)] = FMA(KP923879532, T2z, T24); + T3J = FMA(KP707106781, T3I, T3H); + T3K = T2C - T2B; + Im[WS(rs, 4)] = FMS(KP923879532, T3K, T3J); + Ip[WS(rs, 3)] = FMA(KP923879532, T3K, T3J); + } + { + E T2A, T2D, T3L, T3M; + T2A = FNMS(KP707106781, T23, T1O); + T2D = T2B + T2C; + Rp[WS(rs, 7)] = FNMS(KP923879532, T2D, T2A); + Rm[0] = FMA(KP923879532, T2D, T2A); + T3L = FNMS(KP707106781, T3I, T3H); + T3M = T2y - T2j; + Im[0] = FMS(KP923879532, T3M, T3L); + Ip[WS(rs, 7)] = FMA(KP923879532, T3M, T3L); + } + { + E T2I, T2P, T3D, T3E; + T2I = FMA(KP707106781, T2H, T2E); + T2P = T2L + T2O; + Rm[WS(rs, 6)] = FNMS(KP923879532, T2P, T2I); + Rp[WS(rs, 1)] = FMA(KP923879532, T2P, T2I); + T3D = FMA(KP707106781, T3C, T3B); + T3E = T2R + T2S; + Im[WS(rs, 6)] = FMS(KP923879532, T3E, T3D); + Ip[WS(rs, 1)] = FMA(KP923879532, T3E, T3D); + } + { + E T2Q, T2T, T3F, T3G; + T2Q = FNMS(KP707106781, T2H, T2E); + T2T = T2R - T2S; + Rm[WS(rs, 2)] = FNMS(KP923879532, T2T, T2Q); + Rp[WS(rs, 5)] = FMA(KP923879532, T2T, T2Q); + T3F = FNMS(KP707106781, T3C, T3B); + T3G = T2O - T2L; + Im[WS(rs, 2)] = FMS(KP923879532, T3G, T3F); + Ip[WS(rs, 5)] = FMA(KP923879532, T3G, T3F); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 16}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 16, "hc2cf_16", twinstr, &GENUS, {104, 30, 70, 0} }; + +void X(codelet_hc2cf_16) (planner *p) { + X(khc2c_register) (p, hc2cf_16, &desc, HC2C_VIA_RDFT); +} +#else + +/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hc2cf_16 -include rdft/scalar/hc2cf.h */ + +/* + * This function contains 174 FP additions, 84 FP multiplications, + * (or, 136 additions, 46 multiplications, 38 fused multiply/add), + * 52 stack variables, 3 constants, and 64 memory accesses + */ +#include "rdft/scalar/hc2cf.h" + +static void hc2cf_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { + E T7, T37, T1t, T2U, Ti, T38, T1w, T2R, Tu, T2s, T1C, T2c, TF, T2t, T1H; + E T2d, T1f, T1q, T2B, T2C, T2D, T2E, T1Z, T2j, T24, T2k, TS, T13, T2w, T2x; + E T2y, T2z, T1O, T2g, T1T, T2h; + { + E T1, T2T, T6, T2S; + T1 = Rp[0]; + T2T = Rm[0]; + { + E T3, T5, T2, T4; + T3 = Rp[WS(rs, 4)]; + T5 = Rm[WS(rs, 4)]; + T2 = W[14]; + T4 = W[15]; + T6 = FMA(T2, T3, T4 * T5); + T2S = FNMS(T4, T3, T2 * T5); + } + T7 = T1 + T6; + T37 = T2T - T2S; + T1t = T1 - T6; + T2U = T2S + T2T; + } + { + E Tc, T1u, Th, T1v; + { + E T9, Tb, T8, Ta; + T9 = Rp[WS(rs, 2)]; + Tb = Rm[WS(rs, 2)]; + T8 = W[6]; + Ta = W[7]; + Tc = FMA(T8, T9, Ta * Tb); + T1u = FNMS(Ta, T9, T8 * Tb); + } + { + E Te, Tg, Td, Tf; + Te = Rp[WS(rs, 6)]; + Tg = Rm[WS(rs, 6)]; + Td = W[22]; + Tf = W[23]; + Th = FMA(Td, Te, Tf * Tg); + T1v = FNMS(Tf, Te, Td * Tg); + } + Ti = Tc + Th; + T38 = Tc - Th; + T1w = T1u - T1v; + T2R = T1u + T1v; + } + { + E To, T1y, Tt, T1z, T1A, T1B; + { + E Tl, Tn, Tk, Tm; + Tl = Rp[WS(rs, 1)]; + Tn = Rm[WS(rs, 1)]; + Tk = W[2]; + Tm = W[3]; + To = FMA(Tk, Tl, Tm * Tn); + T1y = FNMS(Tm, Tl, Tk * Tn); + } + { + E Tq, Ts, Tp, Tr; + Tq = Rp[WS(rs, 5)]; + Ts = Rm[WS(rs, 5)]; + Tp = W[18]; + Tr = W[19]; + Tt = FMA(Tp, Tq, Tr * Ts); + T1z = FNMS(Tr, Tq, Tp * Ts); + } + Tu = To + Tt; + T2s = T1y + T1z; + T1A = T1y - T1z; + T1B = To - Tt; + T1C = T1A - T1B; + T2c = T1B + T1A; + } + { + E Tz, T1E, TE, T1F, T1D, T1G; + { + E Tw, Ty, Tv, Tx; + Tw = Rp[WS(rs, 7)]; + Ty = Rm[WS(rs, 7)]; + Tv = W[26]; + Tx = W[27]; + Tz = FMA(Tv, Tw, Tx * Ty); + T1E = FNMS(Tx, Tw, Tv * Ty); + } + { + E TB, TD, TA, TC; + TB = Rp[WS(rs, 3)]; + TD = Rm[WS(rs, 3)]; + TA = W[10]; + TC = W[11]; + TE = FMA(TA, TB, TC * TD); + T1F = FNMS(TC, TB, TA * TD); + } + TF = Tz + TE; + T2t = T1E + T1F; + T1D = Tz - TE; + T1G = T1E - T1F; + T1H = T1D + T1G; + T2d = T1D - T1G; + } + { + E T19, T20, T1p, T1X, T1e, T21, T1k, T1W; + { + E T16, T18, T15, T17; + T16 = Ip[WS(rs, 7)]; + T18 = Im[WS(rs, 7)]; + T15 = W[28]; + T17 = W[29]; + T19 = FMA(T15, T16, T17 * T18); + T20 = FNMS(T17, T16, T15 * T18); + } + { + E T1m, T1o, T1l, T1n; + T1m = Ip[WS(rs, 5)]; + T1o = Im[WS(rs, 5)]; + T1l = W[20]; + T1n = W[21]; + T1p = FMA(T1l, T1m, T1n * T1o); + T1X = FNMS(T1n, T1m, T1l * T1o); + } + { + E T1b, T1d, T1a, T1c; + T1b = Ip[WS(rs, 3)]; + T1d = Im[WS(rs, 3)]; + T1a = W[12]; + T1c = W[13]; + T1e = FMA(T1a, T1b, T1c * T1d); + T21 = FNMS(T1c, T1b, T1a * T1d); + } + { + E T1h, T1j, T1g, T1i; + T1h = Ip[WS(rs, 1)]; + T1j = Im[WS(rs, 1)]; + T1g = W[4]; + T1i = W[5]; + T1k = FMA(T1g, T1h, T1i * T1j); + T1W = FNMS(T1i, T1h, T1g * T1j); + } + T1f = T19 + T1e; + T1q = T1k + T1p; + T2B = T1f - T1q; + T2C = T20 + T21; + T2D = T1W + T1X; + T2E = T2C - T2D; + { + E T1V, T1Y, T22, T23; + T1V = T19 - T1e; + T1Y = T1W - T1X; + T1Z = T1V - T1Y; + T2j = T1V + T1Y; + T22 = T20 - T21; + T23 = T1k - T1p; + T24 = T22 + T23; + T2k = T22 - T23; + } + } + { + E TM, T1K, T12, T1R, TR, T1L, TX, T1Q; + { + E TJ, TL, TI, TK; + TJ = Ip[0]; + TL = Im[0]; + TI = W[0]; + TK = W[1]; + TM = FMA(TI, TJ, TK * TL); + T1K = FNMS(TK, TJ, TI * TL); + } + { + E TZ, T11, TY, T10; + TZ = Ip[WS(rs, 6)]; + T11 = Im[WS(rs, 6)]; + TY = W[24]; + T10 = W[25]; + T12 = FMA(TY, TZ, T10 * T11); + T1R = FNMS(T10, TZ, TY * T11); + } + { + E TO, TQ, TN, TP; + TO = Ip[WS(rs, 4)]; + TQ = Im[WS(rs, 4)]; + TN = W[16]; + TP = W[17]; + TR = FMA(TN, TO, TP * TQ); + T1L = FNMS(TP, TO, TN * TQ); + } + { + E TU, TW, TT, TV; + TU = Ip[WS(rs, 2)]; + TW = Im[WS(rs, 2)]; + TT = W[8]; + TV = W[9]; + TX = FMA(TT, TU, TV * TW); + T1Q = FNMS(TV, TU, TT * TW); + } + TS = TM + TR; + T13 = TX + T12; + T2w = TS - T13; + T2x = T1K + T1L; + T2y = T1Q + T1R; + T2z = T2x - T2y; + { + E T1M, T1N, T1P, T1S; + T1M = T1K - T1L; + T1N = TX - T12; + T1O = T1M + T1N; + T2g = T1M - T1N; + T1P = TM - TR; + T1S = T1Q - T1R; + T1T = T1P - T1S; + T2h = T1P + T1S; + } + } + { + E T1J, T27, T3g, T3i, T26, T3h, T2a, T3d; + { + E T1x, T1I, T3e, T3f; + T1x = T1t - T1w; + T1I = KP707106781 * (T1C - T1H); + T1J = T1x + T1I; + T27 = T1x - T1I; + T3e = KP707106781 * (T2d - T2c); + T3f = T38 + T37; + T3g = T3e + T3f; + T3i = T3f - T3e; + } + { + E T1U, T25, T28, T29; + T1U = FMA(KP923879532, T1O, KP382683432 * T1T); + T25 = FNMS(KP923879532, T24, KP382683432 * T1Z); + T26 = T1U + T25; + T3h = T25 - T1U; + T28 = FNMS(KP923879532, T1T, KP382683432 * T1O); + T29 = FMA(KP382683432, T24, KP923879532 * T1Z); + T2a = T28 - T29; + T3d = T28 + T29; + } + Rm[WS(rs, 4)] = T1J - T26; + Im[WS(rs, 4)] = T3d - T3g; + Rp[WS(rs, 3)] = T1J + T26; + Ip[WS(rs, 3)] = T3d + T3g; + Rm[0] = T27 - T2a; + Im[0] = T3h - T3i; + Rp[WS(rs, 7)] = T27 + T2a; + Ip[WS(rs, 7)] = T3h + T3i; + } + { + E T2v, T2H, T32, T34, T2G, T33, T2K, T2Z; + { + E T2r, T2u, T30, T31; + T2r = T7 - Ti; + T2u = T2s - T2t; + T2v = T2r + T2u; + T2H = T2r - T2u; + T30 = TF - Tu; + T31 = T2U - T2R; + T32 = T30 + T31; + T34 = T31 - T30; + } + { + E T2A, T2F, T2I, T2J; + T2A = T2w + T2z; + T2F = T2B - T2E; + T2G = KP707106781 * (T2A + T2F); + T33 = KP707106781 * (T2F - T2A); + T2I = T2z - T2w; + T2J = T2B + T2E; + T2K = KP707106781 * (T2I - T2J); + T2Z = KP707106781 * (T2I + T2J); + } + Rm[WS(rs, 5)] = T2v - T2G; + Im[WS(rs, 5)] = T2Z - T32; + Rp[WS(rs, 2)] = T2v + T2G; + Ip[WS(rs, 2)] = T2Z + T32; + Rm[WS(rs, 1)] = T2H - T2K; + Im[WS(rs, 1)] = T33 - T34; + Rp[WS(rs, 6)] = T2H + T2K; + Ip[WS(rs, 6)] = T33 + T34; + } + { + E T2f, T2n, T3a, T3c, T2m, T3b, T2q, T35; + { + E T2b, T2e, T36, T39; + T2b = T1t + T1w; + T2e = KP707106781 * (T2c + T2d); + T2f = T2b + T2e; + T2n = T2b - T2e; + T36 = KP707106781 * (T1C + T1H); + T39 = T37 - T38; + T3a = T36 + T39; + T3c = T39 - T36; + } + { + E T2i, T2l, T2o, T2p; + T2i = FMA(KP382683432, T2g, KP923879532 * T2h); + T2l = FNMS(KP382683432, T2k, KP923879532 * T2j); + T2m = T2i + T2l; + T3b = T2l - T2i; + T2o = FNMS(KP382683432, T2h, KP923879532 * T2g); + T2p = FMA(KP923879532, T2k, KP382683432 * T2j); + T2q = T2o - T2p; + T35 = T2o + T2p; + } + Rm[WS(rs, 6)] = T2f - T2m; + Im[WS(rs, 6)] = T35 - T3a; + Rp[WS(rs, 1)] = T2f + T2m; + Ip[WS(rs, 1)] = T35 + T3a; + Rm[WS(rs, 2)] = T2n - T2q; + Im[WS(rs, 2)] = T3b - T3c; + Rp[WS(rs, 5)] = T2n + T2q; + Ip[WS(rs, 5)] = T3b + T3c; + } + { + E TH, T2L, T2W, T2Y, T1s, T2X, T2O, T2P; + { + E Tj, TG, T2Q, T2V; + Tj = T7 + Ti; + TG = Tu + TF; + TH = Tj + TG; + T2L = Tj - TG; + T2Q = T2s + T2t; + T2V = T2R + T2U; + T2W = T2Q + T2V; + T2Y = T2V - T2Q; + } + { + E T14, T1r, T2M, T2N; + T14 = TS + T13; + T1r = T1f + T1q; + T1s = T14 + T1r; + T2X = T1r - T14; + T2M = T2x + T2y; + T2N = T2C + T2D; + T2O = T2M - T2N; + T2P = T2M + T2N; + } + Rm[WS(rs, 7)] = TH - T1s; + Im[WS(rs, 7)] = T2P - T2W; + Rp[0] = TH + T1s; + Ip[0] = T2P + T2W; + Rm[WS(rs, 3)] = T2L - T2O; + Im[WS(rs, 3)] = T2X - T2Y; + Rp[WS(rs, 4)] = T2L + T2O; + Ip[WS(rs, 4)] = T2X + T2Y; + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 16}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 16, "hc2cf_16", twinstr, &GENUS, {136, 46, 38, 0} }; + +void X(codelet_hc2cf_16) (planner *p) { + X(khc2c_register) (p, hc2cf_16, &desc, HC2C_VIA_RDFT); +} +#endif