diff src/fftw-3.3.8/rdft/scalar/r2cb/r2cb_14.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.8/rdft/scalar/r2cb/r2cb_14.c	Tue Nov 19 14:52:55 2019 +0000
@@ -0,0 +1,260 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Thu May 24 08:07:28 EDT 2018 */
+
+#include "rdft/codelet-rdft.h"
+
+#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
+
+/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include rdft/scalar/r2cb.h */
+
+/*
+ * This function contains 62 FP additions, 44 FP multiplications,
+ * (or, 18 additions, 0 multiplications, 44 fused multiply/add),
+ * 46 stack variables, 7 constants, and 28 memory accesses
+ */
+#include "rdft/scalar/r2cb.h"
+
+static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
+     DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
+     DK(KP692021471, +0.692021471630095869627814897002069140197260599);
+     DK(KP801937735, +0.801937735804838252472204639014890102331838324);
+     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
+     DK(KP356895867, +0.356895867892209443894399510021300583399127187);
+     DK(KP554958132, +0.554958132087371191422194871006410481067288862);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) {
+	       E T3, Te, To, TK, Tu, TM, Tr, TL, Tv, TA, TX, TS, TN, TF, T6;
+	       E Tf, Tc, Th, T9, Tg, Tj, Tx, TU, TP, TH, TC, T1, T2, Td, Ti;
+	       T1 = Cr[0];
+	       T2 = Cr[WS(csr, 7)];
+	       T3 = T1 - T2;
+	       Te = T1 + T2;
+	       {
+		    E Tm, Tn, T4, T5;
+		    Tm = Ci[WS(csi, 4)];
+		    Tn = Ci[WS(csi, 3)];
+		    To = Tm - Tn;
+		    TK = Tm + Tn;
+		    {
+			 E Ts, Tt, Tp, Tq;
+			 Ts = Ci[WS(csi, 6)];
+			 Tt = Ci[WS(csi, 1)];
+			 Tu = Ts - Tt;
+			 TM = Ts + Tt;
+			 Tp = Ci[WS(csi, 2)];
+			 Tq = Ci[WS(csi, 5)];
+			 Tr = Tp - Tq;
+			 TL = Tp + Tq;
+		    }
+		    Tv = FMA(KP554958132, Tu, Tr);
+		    TA = FMA(KP554958132, To, Tu);
+		    TX = FNMS(KP554958132, TL, TK);
+		    TS = FMA(KP554958132, TK, TM);
+		    TN = FMA(KP554958132, TM, TL);
+		    TF = FNMS(KP554958132, Tr, To);
+		    T4 = Cr[WS(csr, 2)];
+		    T5 = Cr[WS(csr, 5)];
+		    T6 = T4 - T5;
+		    Tf = T4 + T5;
+		    {
+			 E Ta, Tb, T7, T8;
+			 Ta = Cr[WS(csr, 6)];
+			 Tb = Cr[WS(csr, 1)];
+			 Tc = Ta - Tb;
+			 Th = Ta + Tb;
+			 T7 = Cr[WS(csr, 4)];
+			 T8 = Cr[WS(csr, 3)];
+			 T9 = T7 - T8;
+			 Tg = T7 + T8;
+		    }
+		    Tj = FNMS(KP356895867, Tg, Tf);
+		    Tx = FNMS(KP356895867, Tf, Th);
+		    TU = FNMS(KP356895867, Tc, T9);
+		    TP = FNMS(KP356895867, T6, Tc);
+		    TH = FNMS(KP356895867, T9, T6);
+		    TC = FNMS(KP356895867, Th, Tg);
+	       }
+	       Td = T6 + T9 + Tc;
+	       R1[WS(rs, 3)] = FMA(KP2_000000000, Td, T3);
+	       Ti = Tf + Tg + Th;
+	       R0[0] = FMA(KP2_000000000, Ti, Te);
+	       {
+		    E Tw, Tl, Tk, TY, TW, TV;
+		    Tw = FMA(KP801937735, Tv, To);
+		    Tk = FNMS(KP692021471, Tj, Th);
+		    Tl = FNMS(KP1_801937735, Tk, Te);
+		    R0[WS(rs, 4)] = FNMS(KP1_949855824, Tw, Tl);
+		    R0[WS(rs, 3)] = FMA(KP1_949855824, Tw, Tl);
+		    TY = FNMS(KP801937735, TX, TM);
+		    TV = FNMS(KP692021471, TU, T6);
+		    TW = FNMS(KP1_801937735, TV, T3);
+		    R1[WS(rs, 1)] = FNMS(KP1_949855824, TY, TW);
+		    R1[WS(rs, 5)] = FMA(KP1_949855824, TY, TW);
+	       }
+	       {
+		    E TB, Tz, Ty, TO, TJ, TI;
+		    TB = FNMS(KP801937735, TA, Tr);
+		    Ty = FNMS(KP692021471, Tx, Tg);
+		    Tz = FNMS(KP1_801937735, Ty, Te);
+		    R0[WS(rs, 1)] = FNMS(KP1_949855824, TB, Tz);
+		    R0[WS(rs, 6)] = FMA(KP1_949855824, TB, Tz);
+		    TO = FMA(KP801937735, TN, TK);
+		    TI = FNMS(KP692021471, TH, Tc);
+		    TJ = FNMS(KP1_801937735, TI, T3);
+		    R1[0] = FNMS(KP1_949855824, TO, TJ);
+		    R1[WS(rs, 6)] = FMA(KP1_949855824, TO, TJ);
+	       }
+	       {
+		    E TT, TR, TQ, TG, TE, TD;
+		    TT = FNMS(KP801937735, TS, TL);
+		    TQ = FNMS(KP692021471, TP, T9);
+		    TR = FNMS(KP1_801937735, TQ, T3);
+		    R1[WS(rs, 4)] = FNMS(KP1_949855824, TT, TR);
+		    R1[WS(rs, 2)] = FMA(KP1_949855824, TT, TR);
+		    TG = FNMS(KP801937735, TF, Tu);
+		    TD = FNMS(KP692021471, TC, Tf);
+		    TE = FNMS(KP1_801937735, TD, Te);
+		    R0[WS(rs, 5)] = FNMS(KP1_949855824, TG, TE);
+		    R0[WS(rs, 2)] = FMA(KP1_949855824, TG, TE);
+	       }
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 14, "r2cb_14", {18, 0, 44, 0}, &GENUS };
+
+void X(codelet_r2cb_14) (planner *p) {
+     X(kr2c_register) (p, r2cb_14, &desc);
+}
+
+#else
+
+/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include rdft/scalar/r2cb.h */
+
+/*
+ * This function contains 62 FP additions, 38 FP multiplications,
+ * (or, 36 additions, 12 multiplications, 26 fused multiply/add),
+ * 28 stack variables, 7 constants, and 28 memory accesses
+ */
+#include "rdft/scalar/r2cb.h"
+
+static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
+{
+     DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
+     DK(KP445041867, +0.445041867912628808577805128993589518932711138);
+     DK(KP1_246979603, +1.246979603717467061050009768008479621264549462);
+     DK(KP867767478, +0.867767478235116240951536665696717509219981456);
+     DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
+     DK(KP1_563662964, +1.563662964936059617416889053348115500464669037);
+     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
+     {
+	  INT i;
+	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) {
+	       E T3, Td, T6, Te, Tq, Tz, Tn, Ty, Tc, Tg, Tk, Tx, T9, Tf, T1;
+	       E T2;
+	       T1 = Cr[0];
+	       T2 = Cr[WS(csr, 7)];
+	       T3 = T1 - T2;
+	       Td = T1 + T2;
+	       {
+		    E T4, T5, To, Tp;
+		    T4 = Cr[WS(csr, 2)];
+		    T5 = Cr[WS(csr, 5)];
+		    T6 = T4 - T5;
+		    Te = T4 + T5;
+		    To = Ci[WS(csi, 2)];
+		    Tp = Ci[WS(csi, 5)];
+		    Tq = To - Tp;
+		    Tz = To + Tp;
+	       }
+	       {
+		    E Tl, Tm, Ta, Tb;
+		    Tl = Ci[WS(csi, 6)];
+		    Tm = Ci[WS(csi, 1)];
+		    Tn = Tl - Tm;
+		    Ty = Tl + Tm;
+		    Ta = Cr[WS(csr, 6)];
+		    Tb = Cr[WS(csr, 1)];
+		    Tc = Ta - Tb;
+		    Tg = Ta + Tb;
+	       }
+	       {
+		    E Ti, Tj, T7, T8;
+		    Ti = Ci[WS(csi, 4)];
+		    Tj = Ci[WS(csi, 3)];
+		    Tk = Ti - Tj;
+		    Tx = Ti + Tj;
+		    T7 = Cr[WS(csr, 4)];
+		    T8 = Cr[WS(csr, 3)];
+		    T9 = T7 - T8;
+		    Tf = T7 + T8;
+	       }
+	       R1[WS(rs, 3)] = FMA(KP2_000000000, T6 + T9 + Tc, T3);
+	       R0[0] = FMA(KP2_000000000, Te + Tf + Tg, Td);
+	       {
+		    E Tr, Th, TE, TD;
+		    Tr = FNMS(KP1_949855824, Tn, KP1_563662964 * Tk) - (KP867767478 * Tq);
+		    Th = FMA(KP1_246979603, Tf, Td) + FNMA(KP445041867, Tg, KP1_801937735 * Te);
+		    R0[WS(rs, 2)] = Th - Tr;
+		    R0[WS(rs, 5)] = Th + Tr;
+		    TE = FMA(KP867767478, Tx, KP1_563662964 * Ty) - (KP1_949855824 * Tz);
+		    TD = FMA(KP1_246979603, Tc, T3) + FNMA(KP1_801937735, T9, KP445041867 * T6);
+		    R1[WS(rs, 2)] = TD - TE;
+		    R1[WS(rs, 4)] = TD + TE;
+	       }
+	       {
+		    E Tt, Ts, TA, Tw;
+		    Tt = FMA(KP867767478, Tk, KP1_563662964 * Tn) - (KP1_949855824 * Tq);
+		    Ts = FMA(KP1_246979603, Tg, Td) + FNMA(KP1_801937735, Tf, KP445041867 * Te);
+		    R0[WS(rs, 6)] = Ts - Tt;
+		    R0[WS(rs, 1)] = Ts + Tt;
+		    TA = FNMS(KP1_949855824, Ty, KP1_563662964 * Tx) - (KP867767478 * Tz);
+		    Tw = FMA(KP1_246979603, T9, T3) + FNMA(KP445041867, Tc, KP1_801937735 * T6);
+		    R1[WS(rs, 5)] = Tw - TA;
+		    R1[WS(rs, 1)] = Tw + TA;
+	       }
+	       {
+		    E TC, TB, Tv, Tu;
+		    TC = FMA(KP1_563662964, Tz, KP1_949855824 * Tx) + (KP867767478 * Ty);
+		    TB = FMA(KP1_246979603, T6, T3) + FNMA(KP1_801937735, Tc, KP445041867 * T9);
+		    R1[0] = TB - TC;
+		    R1[WS(rs, 6)] = TB + TC;
+		    Tv = FMA(KP1_563662964, Tq, KP1_949855824 * Tk) + (KP867767478 * Tn);
+		    Tu = FMA(KP1_246979603, Te, Td) + FNMA(KP1_801937735, Tg, KP445041867 * Tf);
+		    R0[WS(rs, 4)] = Tu - Tv;
+		    R0[WS(rs, 3)] = Tu + Tv;
+	       }
+	  }
+     }
+}
+
+static const kr2c_desc desc = { 14, "r2cb_14", {36, 12, 26, 0}, &GENUS };
+
+void X(codelet_r2cb_14) (planner *p) {
+     X(kr2c_register) (p, r2cb_14, &desc);
+}
+
+#endif