Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cb/r2cb_14.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cb/r2cb_14.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,260 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:07:28 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include rdft/scalar/r2cb.h */ + +/* + * This function contains 62 FP additions, 44 FP multiplications, + * (or, 18 additions, 0 multiplications, 44 fused multiply/add), + * 46 stack variables, 7 constants, and 28 memory accesses + */ +#include "rdft/scalar/r2cb.h" + +static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP1_949855824, +1.949855824363647214036263365987862434465571601); + DK(KP1_801937735, +1.801937735804838252472204639014890102331838324); + DK(KP692021471, +0.692021471630095869627814897002069140197260599); + DK(KP801937735, +0.801937735804838252472204639014890102331838324); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP356895867, +0.356895867892209443894399510021300583399127187); + DK(KP554958132, +0.554958132087371191422194871006410481067288862); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) { + E T3, Te, To, TK, Tu, TM, Tr, TL, Tv, TA, TX, TS, TN, TF, T6; + E Tf, Tc, Th, T9, Tg, Tj, Tx, TU, TP, TH, TC, T1, T2, Td, Ti; + T1 = Cr[0]; + T2 = Cr[WS(csr, 7)]; + T3 = T1 - T2; + Te = T1 + T2; + { + E Tm, Tn, T4, T5; + Tm = Ci[WS(csi, 4)]; + Tn = Ci[WS(csi, 3)]; + To = Tm - Tn; + TK = Tm + Tn; + { + E Ts, Tt, Tp, Tq; + Ts = Ci[WS(csi, 6)]; + Tt = Ci[WS(csi, 1)]; + Tu = Ts - Tt; + TM = Ts + Tt; + Tp = Ci[WS(csi, 2)]; + Tq = Ci[WS(csi, 5)]; + Tr = Tp - Tq; + TL = Tp + Tq; + } + Tv = FMA(KP554958132, Tu, Tr); + TA = FMA(KP554958132, To, Tu); + TX = FNMS(KP554958132, TL, TK); + TS = FMA(KP554958132, TK, TM); + TN = FMA(KP554958132, TM, TL); + TF = FNMS(KP554958132, Tr, To); + T4 = Cr[WS(csr, 2)]; + T5 = Cr[WS(csr, 5)]; + T6 = T4 - T5; + Tf = T4 + T5; + { + E Ta, Tb, T7, T8; + Ta = Cr[WS(csr, 6)]; + Tb = Cr[WS(csr, 1)]; + Tc = Ta - Tb; + Th = Ta + Tb; + T7 = Cr[WS(csr, 4)]; + T8 = Cr[WS(csr, 3)]; + T9 = T7 - T8; + Tg = T7 + T8; + } + Tj = FNMS(KP356895867, Tg, Tf); + Tx = FNMS(KP356895867, Tf, Th); + TU = FNMS(KP356895867, Tc, T9); + TP = FNMS(KP356895867, T6, Tc); + TH = FNMS(KP356895867, T9, T6); + TC = FNMS(KP356895867, Th, Tg); + } + Td = T6 + T9 + Tc; + R1[WS(rs, 3)] = FMA(KP2_000000000, Td, T3); + Ti = Tf + Tg + Th; + R0[0] = FMA(KP2_000000000, Ti, Te); + { + E Tw, Tl, Tk, TY, TW, TV; + Tw = FMA(KP801937735, Tv, To); + Tk = FNMS(KP692021471, Tj, Th); + Tl = FNMS(KP1_801937735, Tk, Te); + R0[WS(rs, 4)] = FNMS(KP1_949855824, Tw, Tl); + R0[WS(rs, 3)] = FMA(KP1_949855824, Tw, Tl); + TY = FNMS(KP801937735, TX, TM); + TV = FNMS(KP692021471, TU, T6); + TW = FNMS(KP1_801937735, TV, T3); + R1[WS(rs, 1)] = FNMS(KP1_949855824, TY, TW); + R1[WS(rs, 5)] = FMA(KP1_949855824, TY, TW); + } + { + E TB, Tz, Ty, TO, TJ, TI; + TB = FNMS(KP801937735, TA, Tr); + Ty = FNMS(KP692021471, Tx, Tg); + Tz = FNMS(KP1_801937735, Ty, Te); + R0[WS(rs, 1)] = FNMS(KP1_949855824, TB, Tz); + R0[WS(rs, 6)] = FMA(KP1_949855824, TB, Tz); + TO = FMA(KP801937735, TN, TK); + TI = FNMS(KP692021471, TH, Tc); + TJ = FNMS(KP1_801937735, TI, T3); + R1[0] = FNMS(KP1_949855824, TO, TJ); + R1[WS(rs, 6)] = FMA(KP1_949855824, TO, TJ); + } + { + E TT, TR, TQ, TG, TE, TD; + TT = FNMS(KP801937735, TS, TL); + TQ = FNMS(KP692021471, TP, T9); + TR = FNMS(KP1_801937735, TQ, T3); + R1[WS(rs, 4)] = FNMS(KP1_949855824, TT, TR); + R1[WS(rs, 2)] = FMA(KP1_949855824, TT, TR); + TG = FNMS(KP801937735, TF, Tu); + TD = FNMS(KP692021471, TC, Tf); + TE = FNMS(KP1_801937735, TD, Te); + R0[WS(rs, 5)] = FNMS(KP1_949855824, TG, TE); + R0[WS(rs, 2)] = FMA(KP1_949855824, TG, TE); + } + } + } +} + +static const kr2c_desc desc = { 14, "r2cb_14", {18, 0, 44, 0}, &GENUS }; + +void X(codelet_r2cb_14) (planner *p) { + X(kr2c_register) (p, r2cb_14, &desc); +} + +#else + +/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include rdft/scalar/r2cb.h */ + +/* + * This function contains 62 FP additions, 38 FP multiplications, + * (or, 36 additions, 12 multiplications, 26 fused multiply/add), + * 28 stack variables, 7 constants, and 28 memory accesses + */ +#include "rdft/scalar/r2cb.h" + +static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP1_801937735, +1.801937735804838252472204639014890102331838324); + DK(KP445041867, +0.445041867912628808577805128993589518932711138); + DK(KP1_246979603, +1.246979603717467061050009768008479621264549462); + DK(KP867767478, +0.867767478235116240951536665696717509219981456); + DK(KP1_949855824, +1.949855824363647214036263365987862434465571601); + DK(KP1_563662964, +1.563662964936059617416889053348115500464669037); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) { + E T3, Td, T6, Te, Tq, Tz, Tn, Ty, Tc, Tg, Tk, Tx, T9, Tf, T1; + E T2; + T1 = Cr[0]; + T2 = Cr[WS(csr, 7)]; + T3 = T1 - T2; + Td = T1 + T2; + { + E T4, T5, To, Tp; + T4 = Cr[WS(csr, 2)]; + T5 = Cr[WS(csr, 5)]; + T6 = T4 - T5; + Te = T4 + T5; + To = Ci[WS(csi, 2)]; + Tp = Ci[WS(csi, 5)]; + Tq = To - Tp; + Tz = To + Tp; + } + { + E Tl, Tm, Ta, Tb; + Tl = Ci[WS(csi, 6)]; + Tm = Ci[WS(csi, 1)]; + Tn = Tl - Tm; + Ty = Tl + Tm; + Ta = Cr[WS(csr, 6)]; + Tb = Cr[WS(csr, 1)]; + Tc = Ta - Tb; + Tg = Ta + Tb; + } + { + E Ti, Tj, T7, T8; + Ti = Ci[WS(csi, 4)]; + Tj = Ci[WS(csi, 3)]; + Tk = Ti - Tj; + Tx = Ti + Tj; + T7 = Cr[WS(csr, 4)]; + T8 = Cr[WS(csr, 3)]; + T9 = T7 - T8; + Tf = T7 + T8; + } + R1[WS(rs, 3)] = FMA(KP2_000000000, T6 + T9 + Tc, T3); + R0[0] = FMA(KP2_000000000, Te + Tf + Tg, Td); + { + E Tr, Th, TE, TD; + Tr = FNMS(KP1_949855824, Tn, KP1_563662964 * Tk) - (KP867767478 * Tq); + Th = FMA(KP1_246979603, Tf, Td) + FNMA(KP445041867, Tg, KP1_801937735 * Te); + R0[WS(rs, 2)] = Th - Tr; + R0[WS(rs, 5)] = Th + Tr; + TE = FMA(KP867767478, Tx, KP1_563662964 * Ty) - (KP1_949855824 * Tz); + TD = FMA(KP1_246979603, Tc, T3) + FNMA(KP1_801937735, T9, KP445041867 * T6); + R1[WS(rs, 2)] = TD - TE; + R1[WS(rs, 4)] = TD + TE; + } + { + E Tt, Ts, TA, Tw; + Tt = FMA(KP867767478, Tk, KP1_563662964 * Tn) - (KP1_949855824 * Tq); + Ts = FMA(KP1_246979603, Tg, Td) + FNMA(KP1_801937735, Tf, KP445041867 * Te); + R0[WS(rs, 6)] = Ts - Tt; + R0[WS(rs, 1)] = Ts + Tt; + TA = FNMS(KP1_949855824, Ty, KP1_563662964 * Tx) - (KP867767478 * Tz); + Tw = FMA(KP1_246979603, T9, T3) + FNMA(KP445041867, Tc, KP1_801937735 * T6); + R1[WS(rs, 5)] = Tw - TA; + R1[WS(rs, 1)] = Tw + TA; + } + { + E TC, TB, Tv, Tu; + TC = FMA(KP1_563662964, Tz, KP1_949855824 * Tx) + (KP867767478 * Ty); + TB = FMA(KP1_246979603, T6, T3) + FNMA(KP1_801937735, Tc, KP445041867 * T9); + R1[0] = TB - TC; + R1[WS(rs, 6)] = TB + TC; + Tv = FMA(KP1_563662964, Tq, KP1_949855824 * Tk) + (KP867767478 * Tn); + Tu = FMA(KP1_246979603, Te, Td) + FNMA(KP1_801937735, Tg, KP445041867 * Tf); + R0[WS(rs, 4)] = Tu - Tv; + R0[WS(rs, 3)] = Tu + Tv; + } + } + } +} + +static const kr2c_desc desc = { 14, "r2cb_14", {36, 12, 26, 0}, &GENUS }; + +void X(codelet_r2cb_14) (planner *p) { + X(kr2c_register) (p, r2cb_14, &desc); +} + +#endif