Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cb/r2cbIII_15.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cb/r2cbIII_15.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,305 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:07:44 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cbIII_15 -dft-III -include rdft/scalar/r2cbIII.h */ + +/* + * This function contains 64 FP additions, 43 FP multiplications, + * (or, 21 additions, 0 multiplications, 43 fused multiply/add), + * 42 stack variables, 9 constants, and 30 memory accesses + */ +#include "rdft/scalar/r2cbIII.h" + +static void r2cbIII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); + DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { + E Tk, TA, T5, Th, Tz, T6, Tn, TX, TR, Td, Tm, TI, Tv, TN, TD; + E TL, TM, Ti, Tj, T12, Te, T11; + Ti = Ci[WS(csi, 4)]; + Tj = Ci[WS(csi, 1)]; + Tk = FMA(KP618033988, Tj, Ti); + TA = FNMS(KP618033988, Ti, Tj); + { + E T1, T4, Tg, T2, T3, Tf; + T1 = Cr[WS(csr, 7)]; + T2 = Cr[WS(csr, 4)]; + T3 = Cr[WS(csr, 1)]; + T4 = T2 + T3; + Tg = T2 - T3; + T5 = FMA(KP2_000000000, T4, T1); + Tf = FNMS(KP500000000, T4, T1); + Th = FMA(KP1_118033988, Tg, Tf); + Tz = FNMS(KP1_118033988, Tg, Tf); + } + { + E Tc, TP, T9, TQ; + T6 = Cr[WS(csr, 2)]; + { + E Ta, Tb, T7, T8; + Ta = Cr[WS(csr, 3)]; + Tb = Cr[WS(csr, 6)]; + Tc = Ta + Tb; + TP = Ta - Tb; + T7 = Cr[0]; + T8 = Cr[WS(csr, 5)]; + T9 = T7 + T8; + TQ = T7 - T8; + } + Tn = T9 - Tc; + TX = FMA(KP618033988, TP, TQ); + TR = FNMS(KP618033988, TQ, TP); + Td = T9 + Tc; + Tm = FNMS(KP250000000, Td, T6); + } + { + E Tu, TK, Tr, TJ; + TI = Ci[WS(csi, 2)]; + { + E Ts, Tt, Tp, Tq; + Ts = Ci[WS(csi, 3)]; + Tt = Ci[WS(csi, 6)]; + Tu = Ts - Tt; + TK = Ts + Tt; + Tp = Ci[0]; + Tq = Ci[WS(csi, 5)]; + Tr = Tp + Tq; + TJ = Tq - Tp; + } + Tv = FMA(KP618033988, Tu, Tr); + TN = TJ + TK; + TD = FNMS(KP618033988, Tr, Tu); + TL = TJ - TK; + TM = FNMS(KP250000000, TL, TI); + } + T12 = TL + TI; + Te = T6 + Td; + T11 = Te - T5; + R0[0] = FMA(KP2_000000000, Te, T5); + R0[WS(rs, 5)] = FMS(KP1_732050807, T12, T11); + R1[WS(rs, 2)] = FMA(KP1_732050807, T12, T11); + { + E TB, TF, TE, TG, TS, TU, TC, TO, TH, TT; + TB = FNMS(KP1_902113032, TA, Tz); + TF = FMA(KP1_902113032, TA, Tz); + TC = FNMS(KP559016994, Tn, Tm); + TE = FMA(KP951056516, TD, TC); + TG = FNMS(KP951056516, TD, TC); + TO = FNMS(KP559016994, TN, TM); + TS = FMA(KP951056516, TR, TO); + TU = FNMS(KP951056516, TR, TO); + R0[WS(rs, 6)] = FMA(KP2_000000000, TE, TB); + R1[WS(rs, 1)] = -(FMA(KP2_000000000, TG, TF)); + TH = TB - TE; + R0[WS(rs, 1)] = FNMS(KP1_732050807, TS, TH); + R1[WS(rs, 3)] = -(FMA(KP1_732050807, TS, TH)); + TT = TF - TG; + R0[WS(rs, 4)] = FNMS(KP1_732050807, TU, TT); + R1[WS(rs, 6)] = -(FMA(KP1_732050807, TU, TT)); + } + { + E Tl, Tx, Tw, Ty, TY, T10, To, TW, TV, TZ; + Tl = FNMS(KP1_902113032, Tk, Th); + Tx = FMA(KP1_902113032, Tk, Th); + To = FMA(KP559016994, Tn, Tm); + Tw = FMA(KP951056516, Tv, To); + Ty = FNMS(KP951056516, Tv, To); + TW = FMA(KP559016994, TN, TM); + TY = FNMS(KP951056516, TX, TW); + T10 = FMA(KP951056516, TX, TW); + R1[WS(rs, 4)] = -(FMA(KP2_000000000, Tw, Tl)); + R0[WS(rs, 3)] = FMA(KP2_000000000, Ty, Tx); + TV = Ty - Tx; + R1[0] = FNMS(KP1_732050807, TY, TV); + R1[WS(rs, 5)] = FMA(KP1_732050807, TY, TV); + TZ = Tl - Tw; + R0[WS(rs, 7)] = FNMS(KP1_732050807, T10, TZ); + R0[WS(rs, 2)] = FMA(KP1_732050807, T10, TZ); + } + } + } +} + +static const kr2c_desc desc = { 15, "r2cbIII_15", {21, 0, 43, 0}, &GENUS }; + +void X(codelet_r2cbIII_15) (planner *p) { + X(kr2c_register) (p, r2cbIII_15, &desc); +} + +#else + +/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cbIII_15 -dft-III -include rdft/scalar/r2cbIII.h */ + +/* + * This function contains 64 FP additions, 26 FP multiplications, + * (or, 49 additions, 11 multiplications, 15 fused multiply/add), + * 47 stack variables, 14 constants, and 30 memory accesses + */ +#include "rdft/scalar/r2cbIII.h" + +static void r2cbIII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) +{ + DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); + DK(KP433012701, +0.433012701892219323381861585376468091735701313); + DK(KP968245836, +0.968245836551854221294816349945599902708230426); + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP1_647278207, +1.647278207092663851754840078556380006059321028); + DK(KP1_018073920, +1.018073920910254366901961726787815297021466329); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); + DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); + DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); + DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); + { + INT i; + for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { + E Tv, TD, T5, Ts, TC, T6, Tf, TW, TK, Td, Tg, TP, To, TN, TA; + E TO, TQ, Tt, Tu, T12, Te, T11; + Tt = Ci[WS(csi, 4)]; + Tu = Ci[WS(csi, 1)]; + Tv = FMA(KP1_902113032, Tt, KP1_175570504 * Tu); + TD = FNMS(KP1_175570504, Tt, KP1_902113032 * Tu); + { + E T1, T4, Tq, T2, T3, Tr; + T1 = Cr[WS(csr, 7)]; + T2 = Cr[WS(csr, 4)]; + T3 = Cr[WS(csr, 1)]; + T4 = T2 + T3; + Tq = KP1_118033988 * (T2 - T3); + T5 = FMA(KP2_000000000, T4, T1); + Tr = FNMS(KP500000000, T4, T1); + Ts = Tq + Tr; + TC = Tr - Tq; + } + { + E Tc, TJ, T9, TI; + T6 = Cr[WS(csr, 2)]; + { + E Ta, Tb, T7, T8; + Ta = Cr[WS(csr, 3)]; + Tb = Cr[WS(csr, 6)]; + Tc = Ta + Tb; + TJ = Ta - Tb; + T7 = Cr[0]; + T8 = Cr[WS(csr, 5)]; + T9 = T7 + T8; + TI = T7 - T8; + } + Tf = KP559016994 * (T9 - Tc); + TW = FNMS(KP1_647278207, TJ, KP1_018073920 * TI); + TK = FMA(KP1_647278207, TI, KP1_018073920 * TJ); + Td = T9 + Tc; + Tg = FNMS(KP250000000, Td, T6); + } + { + E Tn, TM, Tk, TL; + TP = Ci[WS(csi, 2)]; + { + E Tl, Tm, Ti, Tj; + Tl = Ci[WS(csi, 3)]; + Tm = Ci[WS(csi, 6)]; + Tn = Tl - Tm; + TM = Tl + Tm; + Ti = Ci[0]; + Tj = Ci[WS(csi, 5)]; + Tk = Ti + Tj; + TL = Ti - Tj; + } + To = FMA(KP951056516, Tk, KP587785252 * Tn); + TN = KP968245836 * (TL - TM); + TA = FNMS(KP587785252, Tk, KP951056516 * Tn); + TO = TL + TM; + TQ = FMA(KP433012701, TO, KP1_732050807 * TP); + } + T12 = KP1_732050807 * (TP - TO); + Te = T6 + Td; + T11 = Te - T5; + R0[0] = FMA(KP2_000000000, Te, T5); + R0[WS(rs, 5)] = T12 - T11; + R1[WS(rs, 2)] = T11 + T12; + { + E TE, TG, TB, TF, TY, T10, Tz, TX, TV, TZ; + TE = TC - TD; + TG = TC + TD; + Tz = Tg - Tf; + TB = Tz + TA; + TF = TA - Tz; + TX = TN + TQ; + TY = TW - TX; + T10 = TW + TX; + R0[WS(rs, 6)] = FMA(KP2_000000000, TB, TE); + R1[WS(rs, 1)] = FMS(KP2_000000000, TF, TG); + TV = TE - TB; + R0[WS(rs, 1)] = TV + TY; + R1[WS(rs, 3)] = TY - TV; + TZ = TF + TG; + R0[WS(rs, 4)] = TZ - T10; + R1[WS(rs, 6)] = -(TZ + T10); + } + { + E Tw, Ty, Tp, Tx, TS, TU, Th, TR, TH, TT; + Tw = Ts - Tv; + Ty = Ts + Tv; + Th = Tf + Tg; + Tp = Th + To; + Tx = Th - To; + TR = TN - TQ; + TS = TK + TR; + TU = TR - TK; + R1[WS(rs, 4)] = -(FMA(KP2_000000000, Tp, Tw)); + R0[WS(rs, 3)] = FMA(KP2_000000000, Tx, Ty); + TH = Tx - Ty; + R1[WS(rs, 5)] = TH - TS; + R1[0] = TH + TS; + TT = Tw - Tp; + R0[WS(rs, 2)] = TT - TU; + R0[WS(rs, 7)] = TT + TU; + } + } + } +} + +static const kr2c_desc desc = { 15, "r2cbIII_15", {49, 11, 15, 0}, &GENUS }; + +void X(codelet_r2cbIII_15) (planner *p) { + X(kr2c_register) (p, r2cbIII_15, &desc); +} + +#endif