Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cb/hc2cbdft_32.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cb/hc2cbdft_32.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,1950 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:07:59 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hc2cbdft_32 -include rdft/scalar/hc2cb.h */ + +/* + * This function contains 498 FP additions, 260 FP multiplications, + * (or, 300 additions, 62 multiplications, 198 fused multiply/add), + * 122 stack variables, 7 constants, and 128 memory accesses + */ +#include "rdft/scalar/hc2cb.h" + +static void hc2cbdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP668178637, +0.668178637919298919997757686523080761552472251); + DK(KP198912367, +0.198912367379658006911597622644676228597850501); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + DK(KP414213562, +0.414213562373095048801688724209698078569671875); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) { + E T3h, T4B, Tv, T3K, T6T, T8Y, T7i, T8L, T7f, T8X, T1G, T4Y, T1j, T4K, T2M; + E T4X, T6d, T8C, T66, T8o, T6M, T8K, T2P, T4L, T3o, T4C, T4q, T5q, T6C, T8p; + E T6z, T8B, TK, TZ, T10, T32, T39, T3L, T4t, T4E, T8t, T8F, T4w, T4F, T8w; + E T8E, T6l, T6E, T6s, T6F, T28, T51, T2R, T4P, T71, T90, T7k, T8P, T2z, T50; + E T2S, T4S, T78, T91, T7l, T8S; + { + E T16, T3l, T2H, T3m, T3, T6, T7, T2E, T13, Ta, Td, Te, T1c, T3j, T3i; + E T2J, T1h, T2K, Tt, T6Q, T6R, T1z, T1E, T6a, T6b, T3g, Tm, T6N, T6O, T1o; + E T1t, T67, T68, T3d, T4o, T4p; + { + E T14, T15, T2F, T2G; + T14 = Ip[0]; + T15 = Im[WS(rs, 15)]; + T16 = T14 + T15; + T3l = T14 - T15; + T2F = Ip[WS(rs, 8)]; + T2G = Im[WS(rs, 7)]; + T2H = T2F + T2G; + T3m = T2F - T2G; + { + E T1, T2, T4, T5; + T1 = Rp[0]; + T2 = Rm[WS(rs, 15)]; + T3 = T1 + T2; + T4 = Rp[WS(rs, 8)]; + T5 = Rm[WS(rs, 7)]; + T6 = T4 + T5; + T7 = T3 + T6; + T2E = T1 - T2; + T13 = T4 - T5; + } + } + { + E T19, T1a, T1b, T18, T1e, T1f, T1g, T1d; + { + E T8, T9, Tb, Tc; + T19 = Ip[WS(rs, 4)]; + T1a = Im[WS(rs, 11)]; + T1b = T19 + T1a; + T8 = Rp[WS(rs, 4)]; + T9 = Rm[WS(rs, 11)]; + Ta = T8 + T9; + T18 = T8 - T9; + T1e = Im[WS(rs, 3)]; + T1f = Ip[WS(rs, 12)]; + T1g = T1e + T1f; + Tb = Rm[WS(rs, 3)]; + Tc = Rp[WS(rs, 12)]; + Td = Tb + Tc; + T1d = Tb - Tc; + } + Te = Ta + Td; + T1c = T18 + T1b; + T3j = T1f - T1e; + T3i = T19 - T1a; + T2J = T18 - T1b; + T1h = T1d + T1g; + T2K = T1d - T1g; + } + { + E Tp, T1A, T1y, T3e, Ts, T1v, T1D, T3f; + { + E Tn, To, T1w, T1x; + Tn = Rm[WS(rs, 1)]; + To = Rp[WS(rs, 14)]; + Tp = Tn + To; + T1A = Tn - To; + T1w = Im[WS(rs, 1)]; + T1x = Ip[WS(rs, 14)]; + T1y = T1w + T1x; + T3e = T1x - T1w; + } + { + E Tq, Tr, T1B, T1C; + Tq = Rp[WS(rs, 6)]; + Tr = Rm[WS(rs, 9)]; + Ts = Tq + Tr; + T1v = Tq - Tr; + T1B = Ip[WS(rs, 6)]; + T1C = Im[WS(rs, 9)]; + T1D = T1B + T1C; + T3f = T1B - T1C; + } + Tt = Tp + Ts; + T6Q = T1A + T1D; + T6R = T1v + T1y; + T1z = T1v - T1y; + T1E = T1A - T1D; + T6a = Tp - Ts; + T6b = T3e - T3f; + T3g = T3e + T3f; + } + { + E Ti, T1p, T1n, T3b, Tl, T1k, T1s, T3c; + { + E Tg, Th, T1l, T1m; + Tg = Rp[WS(rs, 2)]; + Th = Rm[WS(rs, 13)]; + Ti = Tg + Th; + T1p = Tg - Th; + T1l = Ip[WS(rs, 2)]; + T1m = Im[WS(rs, 13)]; + T1n = T1l + T1m; + T3b = T1l - T1m; + } + { + E Tj, Tk, T1q, T1r; + Tj = Rp[WS(rs, 10)]; + Tk = Rm[WS(rs, 5)]; + Tl = Tj + Tk; + T1k = Tj - Tk; + T1q = Ip[WS(rs, 10)]; + T1r = Im[WS(rs, 5)]; + T1s = T1q + T1r; + T3c = T1q - T1r; + } + Tm = Ti + Tl; + T6N = T1p + T1s; + T6O = T1n - T1k; + T1o = T1k + T1n; + T1t = T1p - T1s; + T67 = Ti - Tl; + T68 = T3b - T3c; + T3d = T3b + T3c; + } + T3h = T3d + T3g; + T4B = Tm - Tt; + { + E Tf, Tu, T6P, T6S; + Tf = T7 + Te; + Tu = Tm + Tt; + Tv = Tf + Tu; + T3K = Tf - Tu; + T6P = FMA(KP414213562, T6O, T6N); + T6S = FMA(KP414213562, T6R, T6Q); + T6T = T6P - T6S; + T8Y = T6P + T6S; + } + { + E T7g, T7h, T7d, T7e; + T7g = FNMS(KP414213562, T6N, T6O); + T7h = FNMS(KP414213562, T6Q, T6R); + T7i = T7g + T7h; + T8L = T7h - T7g; + T7d = T2E + T2H; + T7e = T1c + T1h; + T7f = FNMS(KP707106781, T7e, T7d); + T8X = FMA(KP707106781, T7e, T7d); + } + { + E T1u, T1F, T17, T1i; + T1u = FMA(KP414213562, T1t, T1o); + T1F = FNMS(KP414213562, T1E, T1z); + T1G = T1u + T1F; + T4Y = T1F - T1u; + T17 = T13 + T16; + T1i = T1c - T1h; + T1j = FMA(KP707106781, T1i, T17); + T4K = FNMS(KP707106781, T1i, T17); + } + { + E T2I, T2L, T69, T6c; + T2I = T2E - T2H; + T2L = T2J + T2K; + T2M = FMA(KP707106781, T2L, T2I); + T4X = FNMS(KP707106781, T2L, T2I); + T69 = T67 - T68; + T6c = T6a + T6b; + T6d = T69 + T6c; + T8C = T69 - T6c; + } + { + E T64, T65, T6K, T6L; + T64 = T3 - T6; + T65 = T3j - T3i; + T66 = T64 + T65; + T8o = T64 - T65; + T6K = T16 - T13; + T6L = T2J - T2K; + T6M = FMA(KP707106781, T6L, T6K); + T8K = FNMS(KP707106781, T6L, T6K); + } + { + E T2N, T2O, T3k, T3n; + T2N = FNMS(KP414213562, T1o, T1t); + T2O = FMA(KP414213562, T1z, T1E); + T2P = T2N + T2O; + T4L = T2N - T2O; + T3k = T3i + T3j; + T3n = T3l + T3m; + T3o = T3k + T3n; + T4C = T3n - T3k; + } + T4o = T7 - Te; + T4p = T3g - T3d; + T4q = T4o + T4p; + T5q = T4o - T4p; + { + E T6A, T6B, T6x, T6y; + T6A = T67 + T68; + T6B = T6b - T6a; + T6C = T6A + T6B; + T8p = T6B - T6A; + T6x = Ta - Td; + T6y = T3l - T3m; + T6z = T6x + T6y; + T8B = T6y - T6x; + } + } + { + E TC, T6V, T6Y, T1M, T23, T6f, T6j, T31, TY, T6n, T6p, T2i, T2n, T2w, T35; + E T2v, TJ, T6g, T6i, T1R, T1W, T25, T2Y, T24, TR, T72, T75, T2d, T2u, T6m; + E T6q, T38; + { + E Ty, T1Z, T1L, T2Z, TB, T1I, T22, T30; + { + E Tw, Tx, T1J, T1K; + Tw = Rp[WS(rs, 1)]; + Tx = Rm[WS(rs, 14)]; + Ty = Tw + Tx; + T1Z = Tw - Tx; + T1J = Ip[WS(rs, 1)]; + T1K = Im[WS(rs, 14)]; + T1L = T1J + T1K; + T2Z = T1J - T1K; + } + { + E Tz, TA, T20, T21; + Tz = Rp[WS(rs, 9)]; + TA = Rm[WS(rs, 6)]; + TB = Tz + TA; + T1I = Tz - TA; + T20 = Ip[WS(rs, 9)]; + T21 = Im[WS(rs, 6)]; + T22 = T20 + T21; + T30 = T20 - T21; + } + TC = Ty + TB; + T6V = T1L - T1I; + T6Y = T1Z + T22; + T1M = T1I + T1L; + T23 = T1Z - T22; + T6f = Ty - TB; + T6j = T2Z - T30; + T31 = T2Z + T30; + } + { + E TU, T2e, T2h, T33, TX, T2j, T2m, T34; + { + E TS, TT, T2f, T2g; + TS = Rp[WS(rs, 3)]; + TT = Rm[WS(rs, 12)]; + TU = TS + TT; + T2e = TS - TT; + T2f = Ip[WS(rs, 3)]; + T2g = Im[WS(rs, 12)]; + T2h = T2f + T2g; + T33 = T2f - T2g; + } + { + E TV, TW, T2k, T2l; + TV = Rm[WS(rs, 4)]; + TW = Rp[WS(rs, 11)]; + TX = TV + TW; + T2j = TV - TW; + T2k = Im[WS(rs, 4)]; + T2l = Ip[WS(rs, 11)]; + T2m = T2k + T2l; + T34 = T2l - T2k; + } + TY = TU + TX; + T6n = T34 - T33; + T6p = TU - TX; + T2i = T2e + T2h; + T2n = T2j + T2m; + T2w = T2j - T2m; + T35 = T33 + T34; + T2v = T2e - T2h; + } + { + E TF, T1N, T1Q, T2W, TI, T1S, T1V, T2X; + { + E TD, TE, T1O, T1P; + TD = Rp[WS(rs, 5)]; + TE = Rm[WS(rs, 10)]; + TF = TD + TE; + T1N = TD - TE; + T1O = Ip[WS(rs, 5)]; + T1P = Im[WS(rs, 10)]; + T1Q = T1O + T1P; + T2W = T1O - T1P; + } + { + E TG, TH, T1T, T1U; + TG = Rm[WS(rs, 2)]; + TH = Rp[WS(rs, 13)]; + TI = TG + TH; + T1S = TG - TH; + T1T = Im[WS(rs, 2)]; + T1U = Ip[WS(rs, 13)]; + T1V = T1T + T1U; + T2X = T1U - T1T; + } + TJ = TF + TI; + T6g = T2X - T2W; + T6i = TF - TI; + T1R = T1N + T1Q; + T1W = T1S + T1V; + T25 = T1S - T1V; + T2Y = T2W + T2X; + T24 = T1N - T1Q; + } + { + E TN, T2q, T2c, T36, TQ, T29, T2t, T37; + { + E TL, TM, T2a, T2b; + TL = Rm[0]; + TM = Rp[WS(rs, 15)]; + TN = TL + TM; + T2q = TL - TM; + T2a = Im[0]; + T2b = Ip[WS(rs, 15)]; + T2c = T2a + T2b; + T36 = T2b - T2a; + } + { + E TO, TP, T2r, T2s; + TO = Rp[WS(rs, 7)]; + TP = Rm[WS(rs, 8)]; + TQ = TO + TP; + T29 = TO - TP; + T2r = Ip[WS(rs, 7)]; + T2s = Im[WS(rs, 8)]; + T2t = T2r + T2s; + T37 = T2r - T2s; + } + TR = TN + TQ; + T72 = T29 + T2c; + T75 = T2q + T2t; + T2d = T29 - T2c; + T2u = T2q - T2t; + T6m = TN - TQ; + T6q = T36 - T37; + T38 = T36 + T37; + } + { + E T4r, T4s, T8r, T8s; + TK = TC + TJ; + TZ = TR + TY; + T10 = TK + TZ; + T32 = T2Y + T31; + T39 = T35 + T38; + T3L = T39 - T32; + T4r = TC - TJ; + T4s = T31 - T2Y; + T4t = T4r - T4s; + T4E = T4r + T4s; + T8r = T6q - T6p; + T8s = T6m - T6n; + T8t = FMA(KP414213562, T8s, T8r); + T8F = FNMS(KP414213562, T8r, T8s); + { + E T4u, T4v, T8u, T8v; + T4u = TR - TY; + T4v = T38 - T35; + T4w = T4u + T4v; + T4F = T4v - T4u; + T8u = T6j - T6i; + T8v = T6f - T6g; + T8w = FNMS(KP414213562, T8v, T8u); + T8E = FMA(KP414213562, T8u, T8v); + } + } + { + E T6h, T6k, T6o, T6r; + T6h = T6f + T6g; + T6k = T6i + T6j; + T6l = FNMS(KP414213562, T6k, T6h); + T6E = FMA(KP414213562, T6h, T6k); + T6o = T6m + T6n; + T6r = T6p + T6q; + T6s = FMA(KP414213562, T6r, T6o); + T6F = FNMS(KP414213562, T6o, T6r); + { + E T1Y, T4O, T27, T4N, T1X, T26; + T1X = T1R - T1W; + T1Y = FMA(KP707106781, T1X, T1M); + T4O = FNMS(KP707106781, T1X, T1M); + T26 = T24 + T25; + T27 = FMA(KP707106781, T26, T23); + T4N = FNMS(KP707106781, T26, T23); + T28 = FMA(KP198912367, T27, T1Y); + T51 = FNMS(KP668178637, T4N, T4O); + T2R = FNMS(KP198912367, T1Y, T27); + T4P = FMA(KP668178637, T4O, T4N); + } + } + { + E T6X, T8O, T70, T8N, T6W, T6Z; + T6W = T25 - T24; + T6X = FNMS(KP707106781, T6W, T6V); + T8O = FMA(KP707106781, T6W, T6V); + T6Z = T1R + T1W; + T70 = FNMS(KP707106781, T6Z, T6Y); + T8N = FMA(KP707106781, T6Z, T6Y); + T71 = FMA(KP668178637, T70, T6X); + T90 = FNMS(KP198912367, T8N, T8O); + T7k = FNMS(KP668178637, T6X, T70); + T8P = FMA(KP198912367, T8O, T8N); + } + { + E T2p, T4R, T2y, T4Q, T2o, T2x; + T2o = T2i - T2n; + T2p = FMA(KP707106781, T2o, T2d); + T4R = FNMS(KP707106781, T2o, T2d); + T2x = T2v + T2w; + T2y = FMA(KP707106781, T2x, T2u); + T4Q = FNMS(KP707106781, T2x, T2u); + T2z = FNMS(KP198912367, T2y, T2p); + T50 = FMA(KP668178637, T4Q, T4R); + T2S = FMA(KP198912367, T2p, T2y); + T4S = FNMS(KP668178637, T4R, T4Q); + } + { + E T74, T8R, T77, T8Q, T73, T76; + T73 = T2v - T2w; + T74 = FNMS(KP707106781, T73, T72); + T8R = FMA(KP707106781, T73, T72); + T76 = T2i + T2n; + T77 = FNMS(KP707106781, T76, T75); + T8Q = FMA(KP707106781, T76, T75); + T78 = FMA(KP668178637, T77, T74); + T91 = FNMS(KP198912367, T8Q, T8R); + T7l = FNMS(KP668178637, T74, T77); + T8S = FMA(KP198912367, T8R, T8Q); + } + } + { + E T11, T3q, T3x, T3t, T3v, T3w, T3F, T2B, T3A, T2U, T3D, T2C, T3r, T3B, T3H; + E T2V, T3s, T2D; + { + E T3a, T3p, T3u, T12, T3z; + T11 = Tv + T10; + T3a = T32 + T39; + T3p = T3h + T3o; + T3q = T3a + T3p; + T3x = T3p - T3a; + T3u = Tv - T10; + T3t = W[30]; + T3v = T3t * T3u; + T3w = W[31]; + T3F = T3w * T3u; + { + E T1H, T2A, T2Q, T2T; + T1H = FMA(KP923879532, T1G, T1j); + T2A = T28 + T2z; + T2B = FMA(KP980785280, T2A, T1H); + T3A = FNMS(KP980785280, T2A, T1H); + T2Q = FMA(KP923879532, T2P, T2M); + T2T = T2R + T2S; + T2U = FMA(KP980785280, T2T, T2Q); + T3D = FNMS(KP980785280, T2T, T2Q); + } + T12 = W[0]; + T2C = T12 * T2B; + T3r = T12 * T2U; + T3z = W[32]; + T3B = T3z * T3A; + T3H = T3z * T3D; + } + T2D = W[1]; + T2V = FMA(T2D, T2U, T2C); + T3s = FNMS(T2D, T2B, T3r); + Rp[0] = T11 - T2V; + Ip[0] = T3q + T3s; + Rm[0] = T11 + T2V; + Im[0] = T3s - T3q; + { + E T3y, T3G, T3E, T3I, T3C; + T3y = FNMS(T3w, T3x, T3v); + T3G = FMA(T3t, T3x, T3F); + T3C = W[33]; + T3E = FMA(T3C, T3D, T3B); + T3I = FNMS(T3C, T3A, T3H); + Rp[WS(rs, 8)] = T3y - T3E; + Ip[WS(rs, 8)] = T3G + T3I; + Rm[WS(rs, 8)] = T3y + T3E; + Im[WS(rs, 8)] = T3I - T3G; + } + } + { + E T3R, T4b, T47, T49, T4a, T4j, T3J, T3N, T3O, T43, T3W, T4e, T41, T4h, T3X; + E T45, T4f, T4l; + { + E T3P, T3Q, T48, T3M, T3T, T4d; + T3P = TK - TZ; + T3Q = T3o - T3h; + T3R = T3P + T3Q; + T4b = T3Q - T3P; + T48 = T3K - T3L; + T47 = W[46]; + T49 = T47 * T48; + T4a = W[47]; + T4j = T4a * T48; + T3M = T3K + T3L; + T3J = W[14]; + T3N = T3J * T3M; + T3O = W[15]; + T43 = T3O * T3M; + { + E T3U, T3V, T3Z, T40; + T3U = FNMS(KP923879532, T1G, T1j); + T3V = T2R - T2S; + T3W = FMA(KP980785280, T3V, T3U); + T4e = FNMS(KP980785280, T3V, T3U); + T3Z = FNMS(KP923879532, T2P, T2M); + T40 = T2z - T28; + T41 = FMA(KP980785280, T40, T3Z); + T4h = FNMS(KP980785280, T40, T3Z); + } + T3T = W[16]; + T3X = T3T * T3W; + T45 = T3T * T41; + T4d = W[48]; + T4f = T4d * T4e; + T4l = T4d * T4h; + } + { + E T3S, T44, T42, T46, T3Y; + T3S = FNMS(T3O, T3R, T3N); + T44 = FMA(T3J, T3R, T43); + T3Y = W[17]; + T42 = FMA(T3Y, T41, T3X); + T46 = FNMS(T3Y, T3W, T45); + Rp[WS(rs, 4)] = T3S - T42; + Ip[WS(rs, 4)] = T44 + T46; + Rm[WS(rs, 4)] = T3S + T42; + Im[WS(rs, 4)] = T46 - T44; + } + { + E T4c, T4k, T4i, T4m, T4g; + T4c = FNMS(T4a, T4b, T49); + T4k = FMA(T47, T4b, T4j); + T4g = W[49]; + T4i = FMA(T4g, T4h, T4f); + T4m = FNMS(T4g, T4e, T4l); + Rp[WS(rs, 12)] = T4c - T4i; + Ip[WS(rs, 12)] = T4k + T4m; + Rm[WS(rs, 12)] = T4c + T4i; + Im[WS(rs, 12)] = T4m - T4k; + } + } + { + E T4H, T5d, T4n, T4z, T4A, T55, T59, T5b, T5c, T5l, T4U, T5g, T53, T5j, T4V; + E T57, T5h, T5n, T4D, T4G; + T4D = T4B + T4C; + T4G = T4E + T4F; + T4H = FMA(KP707106781, T4G, T4D); + T5d = FNMS(KP707106781, T4G, T4D); + { + E T4y, T5a, T4x, T4J, T5f; + T4x = T4t + T4w; + T4y = FMA(KP707106781, T4x, T4q); + T5a = FNMS(KP707106781, T4x, T4q); + T4n = W[6]; + T4z = T4n * T4y; + T4A = W[7]; + T55 = T4A * T4y; + T59 = W[38]; + T5b = T59 * T5a; + T5c = W[39]; + T5l = T5c * T5a; + { + E T4M, T4T, T4Z, T52; + T4M = FMA(KP923879532, T4L, T4K); + T4T = T4P - T4S; + T4U = FMA(KP831469612, T4T, T4M); + T5g = FNMS(KP831469612, T4T, T4M); + T4Z = FMA(KP923879532, T4Y, T4X); + T52 = T50 - T51; + T53 = FMA(KP831469612, T52, T4Z); + T5j = FNMS(KP831469612, T52, T4Z); + } + T4J = W[8]; + T4V = T4J * T4U; + T57 = T4J * T53; + T5f = W[40]; + T5h = T5f * T5g; + T5n = T5f * T5j; + } + { + E T4I, T56, T54, T58, T4W; + T4I = FNMS(T4A, T4H, T4z); + T56 = FMA(T4n, T4H, T55); + T4W = W[9]; + T54 = FMA(T4W, T53, T4V); + T58 = FNMS(T4W, T4U, T57); + Rp[WS(rs, 2)] = T4I - T54; + Ip[WS(rs, 2)] = T56 + T58; + Rm[WS(rs, 2)] = T4I + T54; + Im[WS(rs, 2)] = T58 - T56; + } + { + E T5e, T5m, T5k, T5o, T5i; + T5e = FNMS(T5c, T5d, T5b); + T5m = FMA(T59, T5d, T5l); + T5i = W[41]; + T5k = FMA(T5i, T5j, T5h); + T5o = FNMS(T5i, T5g, T5n); + Rp[WS(rs, 10)] = T5e - T5k; + Ip[WS(rs, 10)] = T5m + T5o; + Rm[WS(rs, 10)] = T5e + T5k; + Im[WS(rs, 10)] = T5o - T5m; + } + } + { + E T5x, T5R, T5p, T5t, T5u, T5J, T5N, T5P, T5Q, T5Z, T5C, T5U, T5H, T5X, T5D; + E T5L, T5V, T61, T5v, T5w; + T5v = T4C - T4B; + T5w = T4t - T4w; + T5x = FMA(KP707106781, T5w, T5v); + T5R = FNMS(KP707106781, T5w, T5v); + { + E T5s, T5O, T5r, T5z, T5T; + T5r = T4F - T4E; + T5s = FMA(KP707106781, T5r, T5q); + T5O = FNMS(KP707106781, T5r, T5q); + T5p = W[22]; + T5t = T5p * T5s; + T5u = W[23]; + T5J = T5u * T5s; + T5N = W[54]; + T5P = T5N * T5O; + T5Q = W[55]; + T5Z = T5Q * T5O; + { + E T5A, T5B, T5F, T5G; + T5A = FNMS(KP923879532, T4L, T4K); + T5B = T51 + T50; + T5C = FNMS(KP831469612, T5B, T5A); + T5U = FMA(KP831469612, T5B, T5A); + T5F = FNMS(KP923879532, T4Y, T4X); + T5G = T4P + T4S; + T5H = FNMS(KP831469612, T5G, T5F); + T5X = FMA(KP831469612, T5G, T5F); + } + T5z = W[24]; + T5D = T5z * T5C; + T5L = T5z * T5H; + T5T = W[56]; + T5V = T5T * T5U; + T61 = T5T * T5X; + } + { + E T5y, T5K, T5I, T5M, T5E; + T5y = FNMS(T5u, T5x, T5t); + T5K = FMA(T5p, T5x, T5J); + T5E = W[25]; + T5I = FMA(T5E, T5H, T5D); + T5M = FNMS(T5E, T5C, T5L); + Rp[WS(rs, 6)] = T5y - T5I; + Ip[WS(rs, 6)] = T5K + T5M; + Rm[WS(rs, 6)] = T5y + T5I; + Im[WS(rs, 6)] = T5M - T5K; + } + { + E T5S, T60, T5Y, T62, T5W; + T5S = FNMS(T5Q, T5R, T5P); + T60 = FMA(T5N, T5R, T5Z); + T5W = W[57]; + T5Y = FMA(T5W, T5X, T5V); + T62 = FNMS(T5W, T5U, T61); + Rp[WS(rs, 14)] = T5S - T5Y; + Ip[WS(rs, 14)] = T60 + T62; + Rm[WS(rs, 14)] = T5S + T5Y; + Im[WS(rs, 14)] = T62 - T60; + } + } + { + E T6H, T7x, T63, T6v, T6w, T7p, T7t, T7v, T7w, T7F, T7a, T7A, T7n, T7D, T7b; + E T7r, T7B, T7H; + { + E T6D, T6G, T6J, T7z; + T6D = FMA(KP707106781, T6C, T6z); + T6G = T6E + T6F; + T6H = FMA(KP923879532, T6G, T6D); + T7x = FNMS(KP923879532, T6G, T6D); + { + E T6u, T7u, T6e, T6t; + T6e = FMA(KP707106781, T6d, T66); + T6t = T6l + T6s; + T6u = FMA(KP923879532, T6t, T6e); + T7u = FNMS(KP923879532, T6t, T6e); + T63 = W[2]; + T6v = T63 * T6u; + T6w = W[3]; + T7p = T6w * T6u; + T7t = W[34]; + T7v = T7t * T7u; + T7w = W[35]; + T7F = T7w * T7u; + } + { + E T6U, T79, T7j, T7m; + T6U = FMA(KP923879532, T6T, T6M); + T79 = T71 - T78; + T7a = FMA(KP831469612, T79, T6U); + T7A = FNMS(KP831469612, T79, T6U); + T7j = FNMS(KP923879532, T7i, T7f); + T7m = T7k + T7l; + T7n = FMA(KP831469612, T7m, T7j); + T7D = FNMS(KP831469612, T7m, T7j); + } + T6J = W[4]; + T7b = T6J * T7a; + T7r = T6J * T7n; + T7z = W[36]; + T7B = T7z * T7A; + T7H = T7z * T7D; + } + { + E T6I, T7q, T7o, T7s, T7c; + T6I = FNMS(T6w, T6H, T6v); + T7q = FMA(T63, T6H, T7p); + T7c = W[5]; + T7o = FMA(T7c, T7n, T7b); + T7s = FNMS(T7c, T7a, T7r); + Rp[WS(rs, 1)] = T6I - T7o; + Ip[WS(rs, 1)] = T7q + T7s; + Rm[WS(rs, 1)] = T6I + T7o; + Im[WS(rs, 1)] = T7s - T7q; + } + { + E T7y, T7G, T7E, T7I, T7C; + T7y = FNMS(T7w, T7x, T7v); + T7G = FMA(T7t, T7x, T7F); + T7C = W[37]; + T7E = FMA(T7C, T7D, T7B); + T7I = FNMS(T7C, T7A, T7H); + Rp[WS(rs, 9)] = T7y - T7E; + Ip[WS(rs, 9)] = T7G + T7I; + Rm[WS(rs, 9)] = T7y + T7E; + Im[WS(rs, 9)] = T7I - T7G; + } + } + { + E T8H, T9d, T8n, T8z, T8A, T95, T99, T9b, T9c, T9l, T8U, T9g, T93, T9j, T8V; + E T97, T9h, T9n; + { + E T8D, T8G, T8J, T9f; + T8D = FMA(KP707106781, T8C, T8B); + T8G = T8E - T8F; + T8H = FMA(KP923879532, T8G, T8D); + T9d = FNMS(KP923879532, T8G, T8D); + { + E T8y, T9a, T8q, T8x; + T8q = FMA(KP707106781, T8p, T8o); + T8x = T8t - T8w; + T8y = FMA(KP923879532, T8x, T8q); + T9a = FNMS(KP923879532, T8x, T8q); + T8n = W[10]; + T8z = T8n * T8y; + T8A = W[11]; + T95 = T8A * T8y; + T99 = W[42]; + T9b = T99 * T9a; + T9c = W[43]; + T9l = T9c * T9a; + } + { + E T8M, T8T, T8Z, T92; + T8M = FMA(KP923879532, T8L, T8K); + T8T = T8P - T8S; + T8U = FMA(KP980785280, T8T, T8M); + T9g = FNMS(KP980785280, T8T, T8M); + T8Z = FNMS(KP923879532, T8Y, T8X); + T92 = T90 + T91; + T93 = FNMS(KP980785280, T92, T8Z); + T9j = FMA(KP980785280, T92, T8Z); + } + T8J = W[12]; + T8V = T8J * T8U; + T97 = T8J * T93; + T9f = W[44]; + T9h = T9f * T9g; + T9n = T9f * T9j; + } + { + E T8I, T96, T94, T98, T8W; + T8I = FNMS(T8A, T8H, T8z); + T96 = FMA(T8n, T8H, T95); + T8W = W[13]; + T94 = FMA(T8W, T93, T8V); + T98 = FNMS(T8W, T8U, T97); + Rp[WS(rs, 3)] = T8I - T94; + Ip[WS(rs, 3)] = T96 + T98; + Rm[WS(rs, 3)] = T8I + T94; + Im[WS(rs, 3)] = T98 - T96; + } + { + E T9e, T9m, T9k, T9o, T9i; + T9e = FNMS(T9c, T9d, T9b); + T9m = FMA(T99, T9d, T9l); + T9i = W[45]; + T9k = FMA(T9i, T9j, T9h); + T9o = FNMS(T9i, T9g, T9n); + Rp[WS(rs, 11)] = T9e - T9k; + Ip[WS(rs, 11)] = T9m + T9o; + Rm[WS(rs, 11)] = T9e + T9k; + Im[WS(rs, 11)] = T9o - T9m; + } + } + { + E T9x, T9R, T9p, T9t, T9u, T9J, T9N, T9P, T9Q, T9Z, T9C, T9U, T9H, T9X, T9D; + E T9L, T9V, Ta1; + { + E T9v, T9w, T9z, T9T; + T9v = FNMS(KP707106781, T8C, T8B); + T9w = T8w + T8t; + T9x = FNMS(KP923879532, T9w, T9v); + T9R = FMA(KP923879532, T9w, T9v); + { + E T9s, T9O, T9q, T9r; + T9q = FNMS(KP707106781, T8p, T8o); + T9r = T8E + T8F; + T9s = FNMS(KP923879532, T9r, T9q); + T9O = FMA(KP923879532, T9r, T9q); + T9p = W[26]; + T9t = T9p * T9s; + T9u = W[27]; + T9J = T9u * T9s; + T9N = W[58]; + T9P = T9N * T9O; + T9Q = W[59]; + T9Z = T9Q * T9O; + } + { + E T9A, T9B, T9F, T9G; + T9A = FNMS(KP923879532, T8L, T8K); + T9B = T91 - T90; + T9C = FMA(KP980785280, T9B, T9A); + T9U = FNMS(KP980785280, T9B, T9A); + T9F = FMA(KP923879532, T8Y, T8X); + T9G = T8P + T8S; + T9H = FNMS(KP980785280, T9G, T9F); + T9X = FMA(KP980785280, T9G, T9F); + } + T9z = W[28]; + T9D = T9z * T9C; + T9L = T9z * T9H; + T9T = W[60]; + T9V = T9T * T9U; + Ta1 = T9T * T9X; + } + { + E T9y, T9K, T9I, T9M, T9E; + T9y = FNMS(T9u, T9x, T9t); + T9K = FMA(T9p, T9x, T9J); + T9E = W[29]; + T9I = FMA(T9E, T9H, T9D); + T9M = FNMS(T9E, T9C, T9L); + Rp[WS(rs, 7)] = T9y - T9I; + Ip[WS(rs, 7)] = T9K + T9M; + Rm[WS(rs, 7)] = T9y + T9I; + Im[WS(rs, 7)] = T9M - T9K; + } + { + E T9S, Ta0, T9Y, Ta2, T9W; + T9S = FNMS(T9Q, T9R, T9P); + Ta0 = FMA(T9N, T9R, T9Z); + T9W = W[61]; + T9Y = FMA(T9W, T9X, T9V); + Ta2 = FNMS(T9W, T9U, Ta1); + Rp[WS(rs, 15)] = T9S - T9Y; + Ip[WS(rs, 15)] = Ta0 + Ta2; + Rm[WS(rs, 15)] = T9S + T9Y; + Im[WS(rs, 15)] = Ta2 - Ta0; + } + } + { + E T7R, T8b, T7J, T7N, T7O, T83, T87, T89, T8a, T8j, T7W, T8e, T81, T8h, T7X; + E T85, T8f, T8l; + { + E T7P, T7Q, T7T, T8d; + T7P = FNMS(KP707106781, T6C, T6z); + T7Q = T6l - T6s; + T7R = FMA(KP923879532, T7Q, T7P); + T8b = FNMS(KP923879532, T7Q, T7P); + { + E T7M, T88, T7K, T7L; + T7K = FNMS(KP707106781, T6d, T66); + T7L = T6F - T6E; + T7M = FMA(KP923879532, T7L, T7K); + T88 = FNMS(KP923879532, T7L, T7K); + T7J = W[18]; + T7N = T7J * T7M; + T7O = W[19]; + T83 = T7O * T7M; + T87 = W[50]; + T89 = T87 * T88; + T8a = W[51]; + T8j = T8a * T88; + } + { + E T7U, T7V, T7Z, T80; + T7U = FNMS(KP923879532, T6T, T6M); + T7V = T7k - T7l; + T7W = FMA(KP831469612, T7V, T7U); + T8e = FNMS(KP831469612, T7V, T7U); + T7Z = FMA(KP923879532, T7i, T7f); + T80 = T71 + T78; + T81 = FNMS(KP831469612, T80, T7Z); + T8h = FMA(KP831469612, T80, T7Z); + } + T7T = W[20]; + T7X = T7T * T7W; + T85 = T7T * T81; + T8d = W[52]; + T8f = T8d * T8e; + T8l = T8d * T8h; + } + { + E T7S, T84, T82, T86, T7Y; + T7S = FNMS(T7O, T7R, T7N); + T84 = FMA(T7J, T7R, T83); + T7Y = W[21]; + T82 = FMA(T7Y, T81, T7X); + T86 = FNMS(T7Y, T7W, T85); + Rp[WS(rs, 5)] = T7S - T82; + Ip[WS(rs, 5)] = T84 + T86; + Rm[WS(rs, 5)] = T7S + T82; + Im[WS(rs, 5)] = T86 - T84; + } + { + E T8c, T8k, T8i, T8m, T8g; + T8c = FNMS(T8a, T8b, T89); + T8k = FMA(T87, T8b, T8j); + T8g = W[53]; + T8i = FMA(T8g, T8h, T8f); + T8m = FNMS(T8g, T8e, T8l); + Rp[WS(rs, 13)] = T8c - T8i; + Ip[WS(rs, 13)] = T8k + T8m; + Rm[WS(rs, 13)] = T8c + T8i; + Im[WS(rs, 13)] = T8m - T8k; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 32}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 32, "hc2cbdft_32", twinstr, &GENUS, {300, 62, 198, 0} }; + +void X(codelet_hc2cbdft_32) (planner *p) { + X(khc2c_register) (p, hc2cbdft_32, &desc, HC2C_VIA_DFT); +} +#else + +/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hc2cbdft_32 -include rdft/scalar/hc2cb.h */ + +/* + * This function contains 498 FP additions, 208 FP multiplications, + * (or, 404 additions, 114 multiplications, 94 fused multiply/add), + * 102 stack variables, 7 constants, and 128 memory accesses + */ +#include "rdft/scalar/hc2cb.h" + +static void hc2cbdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP831469612, +0.831469612302545237078788377617905756738560812); + DK(KP555570233, +0.555570233019602224742830813948532874374937191); + DK(KP195090322, +0.195090322016128267848284868477022240927691618); + DK(KP980785280, +0.980785280403230449126182236134239036973933731); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) { + E Tf, T4a, T6h, T7Z, T6P, T8e, T1j, T4v, T2R, T4L, T5C, T7E, T6a, T7U, T3n; + E T4q, TZ, T38, T2p, T4B, T7M, T7R, T2y, T4C, T5Y, T63, T6C, T86, T4i, T4n; + E T6z, T85, TK, T31, T1Y, T4y, T7J, T7Q, T27, T4z, T5R, T62, T6v, T83, T4f; + E T4m, T6s, T82, Tu, T4p, T6o, T8f, T6M, T80, T1G, T4K, T2I, T4w, T5J, T7T; + E T67, T7F, T3g, T4b; + { + E T3, T2M, T16, T3k, T6, T13, T2P, T3l, Td, T3i, T1h, T2K, Ta, T3h, T1c; + E T2J; + { + E T1, T2, T2N, T2O; + T1 = Rp[0]; + T2 = Rm[WS(rs, 15)]; + T3 = T1 + T2; + T2M = T1 - T2; + { + E T14, T15, T4, T5; + T14 = Ip[0]; + T15 = Im[WS(rs, 15)]; + T16 = T14 + T15; + T3k = T14 - T15; + T4 = Rp[WS(rs, 8)]; + T5 = Rm[WS(rs, 7)]; + T6 = T4 + T5; + T13 = T4 - T5; + } + T2N = Ip[WS(rs, 8)]; + T2O = Im[WS(rs, 7)]; + T2P = T2N + T2O; + T3l = T2N - T2O; + { + E Tb, Tc, T1d, T1e, T1f, T1g; + Tb = Rm[WS(rs, 3)]; + Tc = Rp[WS(rs, 12)]; + T1d = Tb - Tc; + T1e = Im[WS(rs, 3)]; + T1f = Ip[WS(rs, 12)]; + T1g = T1e + T1f; + Td = Tb + Tc; + T3i = T1f - T1e; + T1h = T1d + T1g; + T2K = T1d - T1g; + } + { + E T8, T9, T18, T19, T1a, T1b; + T8 = Rp[WS(rs, 4)]; + T9 = Rm[WS(rs, 11)]; + T18 = T8 - T9; + T19 = Ip[WS(rs, 4)]; + T1a = Im[WS(rs, 11)]; + T1b = T19 + T1a; + Ta = T8 + T9; + T3h = T19 - T1a; + T1c = T18 + T1b; + T2J = T18 - T1b; + } + } + { + E T7, Te, T6f, T6g; + T7 = T3 + T6; + Te = Ta + Td; + Tf = T7 + Te; + T4a = T7 - Te; + T6f = T16 - T13; + T6g = KP707106781 * (T2J - T2K); + T6h = T6f + T6g; + T7Z = T6f - T6g; + } + { + E T6N, T6O, T17, T1i; + T6N = T2M + T2P; + T6O = KP707106781 * (T1c + T1h); + T6P = T6N - T6O; + T8e = T6O + T6N; + T17 = T13 + T16; + T1i = KP707106781 * (T1c - T1h); + T1j = T17 + T1i; + T4v = T17 - T1i; + } + { + E T2L, T2Q, T5A, T5B; + T2L = KP707106781 * (T2J + T2K); + T2Q = T2M - T2P; + T2R = T2L + T2Q; + T4L = T2Q - T2L; + T5A = T3 - T6; + T5B = T3i - T3h; + T5C = T5A + T5B; + T7E = T5A - T5B; + } + { + E T68, T69, T3j, T3m; + T68 = Ta - Td; + T69 = T3k - T3l; + T6a = T68 + T69; + T7U = T69 - T68; + T3j = T3h + T3i; + T3m = T3k + T3l; + T3n = T3j + T3m; + T4q = T3m - T3j; + } + } + { + E TR, T5S, T29, T2t, T2c, T5W, T2w, T37, TY, T5T, T5V, T2i, T2n, T2r, T34; + E T2q, T6A, T6B; + { + E TL, TM, TN, TO, TP, TQ; + TL = Rm[0]; + TM = Rp[WS(rs, 15)]; + TN = TL + TM; + TO = Rp[WS(rs, 7)]; + TP = Rm[WS(rs, 8)]; + TQ = TO + TP; + TR = TN + TQ; + T5S = TN - TQ; + T29 = TO - TP; + T2t = TL - TM; + } + { + E T2a, T2b, T35, T2u, T2v, T36; + T2a = Im[0]; + T2b = Ip[WS(rs, 15)]; + T35 = T2b - T2a; + T2u = Ip[WS(rs, 7)]; + T2v = Im[WS(rs, 8)]; + T36 = T2u - T2v; + T2c = T2a + T2b; + T5W = T35 - T36; + T2w = T2u + T2v; + T37 = T35 + T36; + } + { + E TU, T2e, T2h, T32, TX, T2j, T2m, T33; + { + E TS, TT, T2f, T2g; + TS = Rp[WS(rs, 3)]; + TT = Rm[WS(rs, 12)]; + TU = TS + TT; + T2e = TS - TT; + T2f = Ip[WS(rs, 3)]; + T2g = Im[WS(rs, 12)]; + T2h = T2f + T2g; + T32 = T2f - T2g; + } + { + E TV, TW, T2k, T2l; + TV = Rm[WS(rs, 4)]; + TW = Rp[WS(rs, 11)]; + TX = TV + TW; + T2j = TV - TW; + T2k = Im[WS(rs, 4)]; + T2l = Ip[WS(rs, 11)]; + T2m = T2k + T2l; + T33 = T2l - T2k; + } + TY = TU + TX; + T5T = T33 - T32; + T5V = TU - TX; + T2i = T2e + T2h; + T2n = T2j + T2m; + T2r = T2j - T2m; + T34 = T32 + T33; + T2q = T2e - T2h; + } + TZ = TR + TY; + T38 = T34 + T37; + { + E T2d, T2o, T7K, T7L; + T2d = T29 - T2c; + T2o = KP707106781 * (T2i - T2n); + T2p = T2d + T2o; + T4B = T2d - T2o; + T7K = T5S - T5T; + T7L = T5W - T5V; + T7M = FMA(KP382683432, T7K, KP923879532 * T7L); + T7R = FNMS(KP923879532, T7K, KP382683432 * T7L); + } + { + E T2s, T2x, T5U, T5X; + T2s = KP707106781 * (T2q + T2r); + T2x = T2t - T2w; + T2y = T2s + T2x; + T4C = T2x - T2s; + T5U = T5S + T5T; + T5X = T5V + T5W; + T5Y = FMA(KP923879532, T5U, KP382683432 * T5X); + T63 = FNMS(KP382683432, T5U, KP923879532 * T5X); + } + T6A = T2t + T2w; + T6B = KP707106781 * (T2i + T2n); + T6C = T6A - T6B; + T86 = T6B + T6A; + { + E T4g, T4h, T6x, T6y; + T4g = TR - TY; + T4h = T37 - T34; + T4i = T4g + T4h; + T4n = T4h - T4g; + T6x = KP707106781 * (T2q - T2r); + T6y = T29 + T2c; + T6z = T6x - T6y; + T85 = T6y + T6x; + } + } + { + E TC, T5L, T1I, T22, T1L, T5P, T25, T30, TJ, T5M, T5O, T1R, T1W, T20, T2X; + E T1Z, T6t, T6u; + { + E Tw, Tx, Ty, Tz, TA, TB; + Tw = Rp[WS(rs, 1)]; + Tx = Rm[WS(rs, 14)]; + Ty = Tw + Tx; + Tz = Rp[WS(rs, 9)]; + TA = Rm[WS(rs, 6)]; + TB = Tz + TA; + TC = Ty + TB; + T5L = Ty - TB; + T1I = Tz - TA; + T22 = Tw - Tx; + } + { + E T1J, T1K, T2Y, T23, T24, T2Z; + T1J = Ip[WS(rs, 1)]; + T1K = Im[WS(rs, 14)]; + T2Y = T1J - T1K; + T23 = Ip[WS(rs, 9)]; + T24 = Im[WS(rs, 6)]; + T2Z = T23 - T24; + T1L = T1J + T1K; + T5P = T2Y - T2Z; + T25 = T23 + T24; + T30 = T2Y + T2Z; + } + { + E TF, T1N, T1Q, T2V, TI, T1S, T1V, T2W; + { + E TD, TE, T1O, T1P; + TD = Rp[WS(rs, 5)]; + TE = Rm[WS(rs, 10)]; + TF = TD + TE; + T1N = TD - TE; + T1O = Ip[WS(rs, 5)]; + T1P = Im[WS(rs, 10)]; + T1Q = T1O + T1P; + T2V = T1O - T1P; + } + { + E TG, TH, T1T, T1U; + TG = Rm[WS(rs, 2)]; + TH = Rp[WS(rs, 13)]; + TI = TG + TH; + T1S = TG - TH; + T1T = Im[WS(rs, 2)]; + T1U = Ip[WS(rs, 13)]; + T1V = T1T + T1U; + T2W = T1U - T1T; + } + TJ = TF + TI; + T5M = T2W - T2V; + T5O = TF - TI; + T1R = T1N + T1Q; + T1W = T1S + T1V; + T20 = T1S - T1V; + T2X = T2V + T2W; + T1Z = T1N - T1Q; + } + TK = TC + TJ; + T31 = T2X + T30; + { + E T1M, T1X, T7H, T7I; + T1M = T1I + T1L; + T1X = KP707106781 * (T1R - T1W); + T1Y = T1M + T1X; + T4y = T1M - T1X; + T7H = T5L - T5M; + T7I = T5P - T5O; + T7J = FNMS(KP923879532, T7I, KP382683432 * T7H); + T7Q = FMA(KP923879532, T7H, KP382683432 * T7I); + } + { + E T21, T26, T5N, T5Q; + T21 = KP707106781 * (T1Z + T20); + T26 = T22 - T25; + T27 = T21 + T26; + T4z = T26 - T21; + T5N = T5L + T5M; + T5Q = T5O + T5P; + T5R = FNMS(KP382683432, T5Q, KP923879532 * T5N); + T62 = FMA(KP382683432, T5N, KP923879532 * T5Q); + } + T6t = T22 + T25; + T6u = KP707106781 * (T1R + T1W); + T6v = T6t - T6u; + T83 = T6u + T6t; + { + E T4d, T4e, T6q, T6r; + T4d = TC - TJ; + T4e = T30 - T2X; + T4f = T4d - T4e; + T4m = T4d + T4e; + T6q = T1L - T1I; + T6r = KP707106781 * (T1Z - T20); + T6s = T6q + T6r; + T82 = T6q - T6r; + } + } + { + E Ti, T3a, Tl, T3b, T1o, T1t, T6j, T6i, T5E, T5D, Tp, T3d, Ts, T3e, T1z; + E T1E, T6m, T6l, T5H, T5G; + { + E T1p, T1n, T1k, T1s; + { + E Tg, Th, T1l, T1m; + Tg = Rp[WS(rs, 2)]; + Th = Rm[WS(rs, 13)]; + Ti = Tg + Th; + T1p = Tg - Th; + T1l = Ip[WS(rs, 2)]; + T1m = Im[WS(rs, 13)]; + T1n = T1l + T1m; + T3a = T1l - T1m; + } + { + E Tj, Tk, T1q, T1r; + Tj = Rp[WS(rs, 10)]; + Tk = Rm[WS(rs, 5)]; + Tl = Tj + Tk; + T1k = Tj - Tk; + T1q = Ip[WS(rs, 10)]; + T1r = Im[WS(rs, 5)]; + T1s = T1q + T1r; + T3b = T1q - T1r; + } + T1o = T1k + T1n; + T1t = T1p - T1s; + T6j = T1p + T1s; + T6i = T1n - T1k; + T5E = T3a - T3b; + T5D = Ti - Tl; + } + { + E T1A, T1y, T1v, T1D; + { + E Tn, To, T1w, T1x; + Tn = Rm[WS(rs, 1)]; + To = Rp[WS(rs, 14)]; + Tp = Tn + To; + T1A = Tn - To; + T1w = Im[WS(rs, 1)]; + T1x = Ip[WS(rs, 14)]; + T1y = T1w + T1x; + T3d = T1x - T1w; + } + { + E Tq, Tr, T1B, T1C; + Tq = Rp[WS(rs, 6)]; + Tr = Rm[WS(rs, 9)]; + Ts = Tq + Tr; + T1v = Tq - Tr; + T1B = Ip[WS(rs, 6)]; + T1C = Im[WS(rs, 9)]; + T1D = T1B + T1C; + T3e = T1B - T1C; + } + T1z = T1v - T1y; + T1E = T1A - T1D; + T6m = T1A + T1D; + T6l = T1v + T1y; + T5H = T3d - T3e; + T5G = Tp - Ts; + } + { + E Tm, Tt, T6k, T6n; + Tm = Ti + Tl; + Tt = Tp + Ts; + Tu = Tm + Tt; + T4p = Tm - Tt; + T6k = FMA(KP382683432, T6i, KP923879532 * T6j); + T6n = FMA(KP382683432, T6l, KP923879532 * T6m); + T6o = T6k - T6n; + T8f = T6k + T6n; + } + { + E T6K, T6L, T1u, T1F; + T6K = FNMS(KP923879532, T6i, KP382683432 * T6j); + T6L = FNMS(KP923879532, T6l, KP382683432 * T6m); + T6M = T6K + T6L; + T80 = T6K - T6L; + T1u = FMA(KP923879532, T1o, KP382683432 * T1t); + T1F = FNMS(KP382683432, T1E, KP923879532 * T1z); + T1G = T1u + T1F; + T4K = T1F - T1u; + } + { + E T2G, T2H, T5F, T5I; + T2G = FNMS(KP382683432, T1o, KP923879532 * T1t); + T2H = FMA(KP382683432, T1z, KP923879532 * T1E); + T2I = T2G + T2H; + T4w = T2G - T2H; + T5F = T5D - T5E; + T5I = T5G + T5H; + T5J = KP707106781 * (T5F + T5I); + T7T = KP707106781 * (T5F - T5I); + } + { + E T65, T66, T3c, T3f; + T65 = T5D + T5E; + T66 = T5H - T5G; + T67 = KP707106781 * (T65 + T66); + T7F = KP707106781 * (T66 - T65); + T3c = T3a + T3b; + T3f = T3d + T3e; + T3g = T3c + T3f; + T4b = T3f - T3c; + } + } + { + E T11, T3s, T3p, T3u, T3K, T40, T3G, T3Y, T2T, T43, T3z, T3P, T2B, T45, T3x; + E T3T; + { + E Tv, T10, T3E, T3F; + Tv = Tf + Tu; + T10 = TK + TZ; + T11 = Tv + T10; + T3s = Tv - T10; + { + E T39, T3o, T3I, T3J; + T39 = T31 + T38; + T3o = T3g + T3n; + T3p = T39 + T3o; + T3u = T3o - T39; + T3I = TK - TZ; + T3J = T3n - T3g; + T3K = T3I + T3J; + T40 = T3J - T3I; + } + T3E = Tf - Tu; + T3F = T38 - T31; + T3G = T3E + T3F; + T3Y = T3E - T3F; + { + E T2S, T3N, T2F, T3O, T2D, T2E; + T2S = T2I + T2R; + T3N = T1j - T1G; + T2D = FNMS(KP195090322, T1Y, KP980785280 * T27); + T2E = FMA(KP195090322, T2p, KP980785280 * T2y); + T2F = T2D + T2E; + T3O = T2D - T2E; + T2T = T2F + T2S; + T43 = T3N - T3O; + T3z = T2S - T2F; + T3P = T3N + T3O; + } + { + E T1H, T3S, T2A, T3R, T28, T2z; + T1H = T1j + T1G; + T3S = T2R - T2I; + T28 = FMA(KP980785280, T1Y, KP195090322 * T27); + T2z = FNMS(KP195090322, T2y, KP980785280 * T2p); + T2A = T28 + T2z; + T3R = T2z - T28; + T2B = T1H + T2A; + T45 = T3S - T3R; + T3x = T1H - T2A; + T3T = T3R + T3S; + } + } + { + E T2U, T3q, T12, T2C; + T12 = W[0]; + T2C = W[1]; + T2U = FMA(T12, T2B, T2C * T2T); + T3q = FNMS(T2C, T2B, T12 * T2T); + Rp[0] = T11 - T2U; + Ip[0] = T3p + T3q; + Rm[0] = T11 + T2U; + Im[0] = T3q - T3p; + } + { + E T41, T47, T46, T48; + { + E T3X, T3Z, T42, T44; + T3X = W[46]; + T3Z = W[47]; + T41 = FNMS(T3Z, T40, T3X * T3Y); + T47 = FMA(T3Z, T3Y, T3X * T40); + T42 = W[48]; + T44 = W[49]; + T46 = FMA(T42, T43, T44 * T45); + T48 = FNMS(T44, T43, T42 * T45); + } + Rp[WS(rs, 12)] = T41 - T46; + Ip[WS(rs, 12)] = T47 + T48; + Rm[WS(rs, 12)] = T41 + T46; + Im[WS(rs, 12)] = T48 - T47; + } + { + E T3v, T3B, T3A, T3C; + { + E T3r, T3t, T3w, T3y; + T3r = W[30]; + T3t = W[31]; + T3v = FNMS(T3t, T3u, T3r * T3s); + T3B = FMA(T3t, T3s, T3r * T3u); + T3w = W[32]; + T3y = W[33]; + T3A = FMA(T3w, T3x, T3y * T3z); + T3C = FNMS(T3y, T3x, T3w * T3z); + } + Rp[WS(rs, 8)] = T3v - T3A; + Ip[WS(rs, 8)] = T3B + T3C; + Rm[WS(rs, 8)] = T3v + T3A; + Im[WS(rs, 8)] = T3C - T3B; + } + { + E T3L, T3V, T3U, T3W; + { + E T3D, T3H, T3M, T3Q; + T3D = W[14]; + T3H = W[15]; + T3L = FNMS(T3H, T3K, T3D * T3G); + T3V = FMA(T3H, T3G, T3D * T3K); + T3M = W[16]; + T3Q = W[17]; + T3U = FMA(T3M, T3P, T3Q * T3T); + T3W = FNMS(T3Q, T3P, T3M * T3T); + } + Rp[WS(rs, 4)] = T3L - T3U; + Ip[WS(rs, 4)] = T3V + T3W; + Rm[WS(rs, 4)] = T3L + T3U; + Im[WS(rs, 4)] = T3W - T3V; + } + } + { + E T7O, T8m, T7W, T8o, T8E, T8U, T8A, T8S, T8h, T8X, T8t, T8J, T89, T8Z, T8r; + E T8N; + { + E T7G, T7N, T8y, T8z; + T7G = T7E + T7F; + T7N = T7J + T7M; + T7O = T7G + T7N; + T8m = T7G - T7N; + { + E T7S, T7V, T8C, T8D; + T7S = T7Q + T7R; + T7V = T7T + T7U; + T7W = T7S + T7V; + T8o = T7V - T7S; + T8C = T7J - T7M; + T8D = T7U - T7T; + T8E = T8C + T8D; + T8U = T8D - T8C; + } + T8y = T7E - T7F; + T8z = T7R - T7Q; + T8A = T8y + T8z; + T8S = T8y - T8z; + { + E T8g, T8H, T8d, T8I, T8b, T8c; + T8g = T8e - T8f; + T8H = T7Z - T80; + T8b = FNMS(KP980785280, T82, KP195090322 * T83); + T8c = FNMS(KP980785280, T85, KP195090322 * T86); + T8d = T8b + T8c; + T8I = T8b - T8c; + T8h = T8d + T8g; + T8X = T8H - T8I; + T8t = T8g - T8d; + T8J = T8H + T8I; + } + { + E T81, T8L, T88, T8M, T84, T87; + T81 = T7Z + T80; + T8L = T8f + T8e; + T84 = FMA(KP195090322, T82, KP980785280 * T83); + T87 = FMA(KP195090322, T85, KP980785280 * T86); + T88 = T84 - T87; + T8M = T84 + T87; + T89 = T81 + T88; + T8Z = T8M + T8L; + T8r = T81 - T88; + T8N = T8L - T8M; + } + } + { + E T7X, T8j, T8i, T8k; + { + E T7D, T7P, T7Y, T8a; + T7D = W[10]; + T7P = W[11]; + T7X = FNMS(T7P, T7W, T7D * T7O); + T8j = FMA(T7P, T7O, T7D * T7W); + T7Y = W[12]; + T8a = W[13]; + T8i = FMA(T7Y, T89, T8a * T8h); + T8k = FNMS(T8a, T89, T7Y * T8h); + } + Rp[WS(rs, 3)] = T7X - T8i; + Ip[WS(rs, 3)] = T8j + T8k; + Rm[WS(rs, 3)] = T7X + T8i; + Im[WS(rs, 3)] = T8k - T8j; + } + { + E T8V, T91, T90, T92; + { + E T8R, T8T, T8W, T8Y; + T8R = W[58]; + T8T = W[59]; + T8V = FNMS(T8T, T8U, T8R * T8S); + T91 = FMA(T8T, T8S, T8R * T8U); + T8W = W[60]; + T8Y = W[61]; + T90 = FMA(T8W, T8X, T8Y * T8Z); + T92 = FNMS(T8Y, T8X, T8W * T8Z); + } + Rp[WS(rs, 15)] = T8V - T90; + Ip[WS(rs, 15)] = T91 + T92; + Rm[WS(rs, 15)] = T8V + T90; + Im[WS(rs, 15)] = T92 - T91; + } + { + E T8p, T8v, T8u, T8w; + { + E T8l, T8n, T8q, T8s; + T8l = W[42]; + T8n = W[43]; + T8p = FNMS(T8n, T8o, T8l * T8m); + T8v = FMA(T8n, T8m, T8l * T8o); + T8q = W[44]; + T8s = W[45]; + T8u = FMA(T8q, T8r, T8s * T8t); + T8w = FNMS(T8s, T8r, T8q * T8t); + } + Rp[WS(rs, 11)] = T8p - T8u; + Ip[WS(rs, 11)] = T8v + T8w; + Rm[WS(rs, 11)] = T8p + T8u; + Im[WS(rs, 11)] = T8w - T8v; + } + { + E T8F, T8P, T8O, T8Q; + { + E T8x, T8B, T8G, T8K; + T8x = W[26]; + T8B = W[27]; + T8F = FNMS(T8B, T8E, T8x * T8A); + T8P = FMA(T8B, T8A, T8x * T8E); + T8G = W[28]; + T8K = W[29]; + T8O = FMA(T8G, T8J, T8K * T8N); + T8Q = FNMS(T8K, T8J, T8G * T8N); + } + Rp[WS(rs, 7)] = T8F - T8O; + Ip[WS(rs, 7)] = T8P + T8Q; + Rm[WS(rs, 7)] = T8F + T8O; + Im[WS(rs, 7)] = T8Q - T8P; + } + } + { + E T4k, T4S, T4s, T4U, T5a, T5q, T56, T5o, T4N, T5t, T4Z, T5f, T4F, T5v, T4X; + E T5j; + { + E T4c, T4j, T54, T55; + T4c = T4a + T4b; + T4j = KP707106781 * (T4f + T4i); + T4k = T4c + T4j; + T4S = T4c - T4j; + { + E T4o, T4r, T58, T59; + T4o = KP707106781 * (T4m + T4n); + T4r = T4p + T4q; + T4s = T4o + T4r; + T4U = T4r - T4o; + T58 = KP707106781 * (T4f - T4i); + T59 = T4q - T4p; + T5a = T58 + T59; + T5q = T59 - T58; + } + T54 = T4a - T4b; + T55 = KP707106781 * (T4n - T4m); + T56 = T54 + T55; + T5o = T54 - T55; + { + E T4M, T5d, T4J, T5e, T4H, T4I; + T4M = T4K + T4L; + T5d = T4v - T4w; + T4H = FNMS(KP831469612, T4y, KP555570233 * T4z); + T4I = FMA(KP831469612, T4B, KP555570233 * T4C); + T4J = T4H + T4I; + T5e = T4H - T4I; + T4N = T4J + T4M; + T5t = T5d - T5e; + T4Z = T4M - T4J; + T5f = T5d + T5e; + } + { + E T4x, T5i, T4E, T5h, T4A, T4D; + T4x = T4v + T4w; + T5i = T4L - T4K; + T4A = FMA(KP555570233, T4y, KP831469612 * T4z); + T4D = FNMS(KP831469612, T4C, KP555570233 * T4B); + T4E = T4A + T4D; + T5h = T4D - T4A; + T4F = T4x + T4E; + T5v = T5i - T5h; + T4X = T4x - T4E; + T5j = T5h + T5i; + } + } + { + E T4t, T4P, T4O, T4Q; + { + E T49, T4l, T4u, T4G; + T49 = W[6]; + T4l = W[7]; + T4t = FNMS(T4l, T4s, T49 * T4k); + T4P = FMA(T4l, T4k, T49 * T4s); + T4u = W[8]; + T4G = W[9]; + T4O = FMA(T4u, T4F, T4G * T4N); + T4Q = FNMS(T4G, T4F, T4u * T4N); + } + Rp[WS(rs, 2)] = T4t - T4O; + Ip[WS(rs, 2)] = T4P + T4Q; + Rm[WS(rs, 2)] = T4t + T4O; + Im[WS(rs, 2)] = T4Q - T4P; + } + { + E T5r, T5x, T5w, T5y; + { + E T5n, T5p, T5s, T5u; + T5n = W[54]; + T5p = W[55]; + T5r = FNMS(T5p, T5q, T5n * T5o); + T5x = FMA(T5p, T5o, T5n * T5q); + T5s = W[56]; + T5u = W[57]; + T5w = FMA(T5s, T5t, T5u * T5v); + T5y = FNMS(T5u, T5t, T5s * T5v); + } + Rp[WS(rs, 14)] = T5r - T5w; + Ip[WS(rs, 14)] = T5x + T5y; + Rm[WS(rs, 14)] = T5r + T5w; + Im[WS(rs, 14)] = T5y - T5x; + } + { + E T4V, T51, T50, T52; + { + E T4R, T4T, T4W, T4Y; + T4R = W[38]; + T4T = W[39]; + T4V = FNMS(T4T, T4U, T4R * T4S); + T51 = FMA(T4T, T4S, T4R * T4U); + T4W = W[40]; + T4Y = W[41]; + T50 = FMA(T4W, T4X, T4Y * T4Z); + T52 = FNMS(T4Y, T4X, T4W * T4Z); + } + Rp[WS(rs, 10)] = T4V - T50; + Ip[WS(rs, 10)] = T51 + T52; + Rm[WS(rs, 10)] = T4V + T50; + Im[WS(rs, 10)] = T52 - T51; + } + { + E T5b, T5l, T5k, T5m; + { + E T53, T57, T5c, T5g; + T53 = W[22]; + T57 = W[23]; + T5b = FNMS(T57, T5a, T53 * T56); + T5l = FMA(T57, T56, T53 * T5a); + T5c = W[24]; + T5g = W[25]; + T5k = FMA(T5c, T5f, T5g * T5j); + T5m = FNMS(T5g, T5f, T5c * T5j); + } + Rp[WS(rs, 6)] = T5b - T5k; + Ip[WS(rs, 6)] = T5l + T5m; + Rm[WS(rs, 6)] = T5b + T5k; + Im[WS(rs, 6)] = T5m - T5l; + } + } + { + E T60, T6W, T6c, T6Y, T7e, T7u, T7a, T7s, T6R, T7x, T73, T7j, T6F, T7z, T71; + E T7n; + { + E T5K, T5Z, T78, T79; + T5K = T5C + T5J; + T5Z = T5R + T5Y; + T60 = T5K + T5Z; + T6W = T5K - T5Z; + { + E T64, T6b, T7c, T7d; + T64 = T62 + T63; + T6b = T67 + T6a; + T6c = T64 + T6b; + T6Y = T6b - T64; + T7c = T5R - T5Y; + T7d = T6a - T67; + T7e = T7c + T7d; + T7u = T7d - T7c; + } + T78 = T5C - T5J; + T79 = T63 - T62; + T7a = T78 + T79; + T7s = T78 - T79; + { + E T6Q, T7h, T6J, T7i, T6H, T6I; + T6Q = T6M + T6P; + T7h = T6h - T6o; + T6H = FNMS(KP555570233, T6s, KP831469612 * T6v); + T6I = FMA(KP555570233, T6z, KP831469612 * T6C); + T6J = T6H + T6I; + T7i = T6H - T6I; + T6R = T6J + T6Q; + T7x = T7h - T7i; + T73 = T6Q - T6J; + T7j = T7h + T7i; + } + { + E T6p, T7m, T6E, T7l, T6w, T6D; + T6p = T6h + T6o; + T7m = T6P - T6M; + T6w = FMA(KP831469612, T6s, KP555570233 * T6v); + T6D = FNMS(KP555570233, T6C, KP831469612 * T6z); + T6E = T6w + T6D; + T7l = T6D - T6w; + T6F = T6p + T6E; + T7z = T7m - T7l; + T71 = T6p - T6E; + T7n = T7l + T7m; + } + } + { + E T6d, T6T, T6S, T6U; + { + E T5z, T61, T6e, T6G; + T5z = W[2]; + T61 = W[3]; + T6d = FNMS(T61, T6c, T5z * T60); + T6T = FMA(T61, T60, T5z * T6c); + T6e = W[4]; + T6G = W[5]; + T6S = FMA(T6e, T6F, T6G * T6R); + T6U = FNMS(T6G, T6F, T6e * T6R); + } + Rp[WS(rs, 1)] = T6d - T6S; + Ip[WS(rs, 1)] = T6T + T6U; + Rm[WS(rs, 1)] = T6d + T6S; + Im[WS(rs, 1)] = T6U - T6T; + } + { + E T7v, T7B, T7A, T7C; + { + E T7r, T7t, T7w, T7y; + T7r = W[50]; + T7t = W[51]; + T7v = FNMS(T7t, T7u, T7r * T7s); + T7B = FMA(T7t, T7s, T7r * T7u); + T7w = W[52]; + T7y = W[53]; + T7A = FMA(T7w, T7x, T7y * T7z); + T7C = FNMS(T7y, T7x, T7w * T7z); + } + Rp[WS(rs, 13)] = T7v - T7A; + Ip[WS(rs, 13)] = T7B + T7C; + Rm[WS(rs, 13)] = T7v + T7A; + Im[WS(rs, 13)] = T7C - T7B; + } + { + E T6Z, T75, T74, T76; + { + E T6V, T6X, T70, T72; + T6V = W[34]; + T6X = W[35]; + T6Z = FNMS(T6X, T6Y, T6V * T6W); + T75 = FMA(T6X, T6W, T6V * T6Y); + T70 = W[36]; + T72 = W[37]; + T74 = FMA(T70, T71, T72 * T73); + T76 = FNMS(T72, T71, T70 * T73); + } + Rp[WS(rs, 9)] = T6Z - T74; + Ip[WS(rs, 9)] = T75 + T76; + Rm[WS(rs, 9)] = T6Z + T74; + Im[WS(rs, 9)] = T76 - T75; + } + { + E T7f, T7p, T7o, T7q; + { + E T77, T7b, T7g, T7k; + T77 = W[18]; + T7b = W[19]; + T7f = FNMS(T7b, T7e, T77 * T7a); + T7p = FMA(T7b, T7a, T77 * T7e); + T7g = W[20]; + T7k = W[21]; + T7o = FMA(T7g, T7j, T7k * T7n); + T7q = FNMS(T7k, T7j, T7g * T7n); + } + Rp[WS(rs, 5)] = T7f - T7o; + Ip[WS(rs, 5)] = T7p + T7q; + Rm[WS(rs, 5)] = T7f + T7o; + Im[WS(rs, 5)] = T7q - T7p; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 32}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 32, "hc2cbdft_32", twinstr, &GENUS, {404, 114, 94, 0} }; + +void X(codelet_hc2cbdft_32) (planner *p) { + X(khc2c_register) (p, hc2cbdft_32, &desc, HC2C_VIA_DFT); +} +#endif