Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cb/hc2cbdft_20.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cb/hc2cbdft_20.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,1149 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:07:59 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cbdft_20 -include rdft/scalar/hc2cb.h */ + +/* + * This function contains 286 FP additions, 148 FP multiplications, + * (or, 176 additions, 38 multiplications, 110 fused multiply/add), + * 104 stack variables, 4 constants, and 80 memory accesses + */ +#include "rdft/scalar/hc2cb.h" + +static void hc2cbdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { + E T27, T2o, T3T, T41, T2p, T40, T1N, T2Q, T1w, T2L, T4n, T59, T4A, T5e, T24; + E T2m, T2h, T2Z, T3P, T4J, T3W, T3Y, T7, TC, T2c, T2d, T3y, T3F, T3G, T3H; + E T46, T4d, T4e, T4f, T4r, T4u, T4v, T4w, T1E, T1H, T1I, T1J, TJ, T16, T17; + E T18; + { + E T3, T1A, TI, T25, T6, TF, T1D, T26, Te, T47, T4k, TO, T1e, T3z, T3M; + E T1S, Tt, T4a, T4h, TZ, T1p, T3C, T3J, T1Z, TA, T4b, T4i, T14, T1u, T3D; + E T3K, T22, Tl, T48, T4l, TT, T1j, T3A, T3N, T1V; + { + E T1, T2, TG, TH; + T1 = Rp[0]; + T2 = Rm[WS(rs, 9)]; + T3 = T1 + T2; + T1A = T1 - T2; + TG = Ip[0]; + TH = Im[WS(rs, 9)]; + TI = TG + TH; + T25 = TG - TH; + } + { + E T4, T5, T1B, T1C; + T4 = Rp[WS(rs, 5)]; + T5 = Rm[WS(rs, 4)]; + T6 = T4 + T5; + TF = T4 - T5; + T1B = Ip[WS(rs, 5)]; + T1C = Im[WS(rs, 4)]; + T1D = T1B + T1C; + T26 = T1B - T1C; + } + { + E Ta, T1a, TN, T1Q, Td, TK, T1d, T1R; + { + E T8, T9, TL, TM; + T8 = Rp[WS(rs, 4)]; + T9 = Rm[WS(rs, 5)]; + Ta = T8 + T9; + T1a = T8 - T9; + TL = Ip[WS(rs, 4)]; + TM = Im[WS(rs, 5)]; + TN = TL + TM; + T1Q = TL - TM; + } + { + E Tb, Tc, T1b, T1c; + Tb = Rp[WS(rs, 9)]; + Tc = Rm[0]; + Td = Tb + Tc; + TK = Tb - Tc; + T1b = Ip[WS(rs, 9)]; + T1c = Im[0]; + T1d = T1b + T1c; + T1R = T1b - T1c; + } + Te = Ta + Td; + T47 = TN - TK; + T4k = T1a + T1d; + TO = TK + TN; + T1e = T1a - T1d; + T3z = Ta - Td; + T3M = T1Q - T1R; + T1S = T1Q + T1R; + } + { + E Tp, T1l, TY, T1X, Ts, TV, T1o, T1Y; + { + E Tn, To, TW, TX; + Tn = Rp[WS(rs, 8)]; + To = Rm[WS(rs, 1)]; + Tp = Tn + To; + T1l = Tn - To; + TW = Ip[WS(rs, 8)]; + TX = Im[WS(rs, 1)]; + TY = TW + TX; + T1X = TW - TX; + } + { + E Tq, Tr, T1m, T1n; + Tq = Rm[WS(rs, 6)]; + Tr = Rp[WS(rs, 3)]; + Ts = Tq + Tr; + TV = Tq - Tr; + T1m = Im[WS(rs, 6)]; + T1n = Ip[WS(rs, 3)]; + T1o = T1m + T1n; + T1Y = T1n - T1m; + } + Tt = Tp + Ts; + T4a = TY - TV; + T4h = T1l - T1o; + TZ = TV + TY; + T1p = T1l + T1o; + T3C = Tp - Ts; + T3J = T1X - T1Y; + T1Z = T1X + T1Y; + } + { + E Tw, T1q, T13, T20, Tz, T10, T1t, T21; + { + E Tu, Tv, T11, T12; + Tu = Rm[WS(rs, 7)]; + Tv = Rp[WS(rs, 2)]; + Tw = Tu + Tv; + T1q = Tu - Tv; + T11 = Im[WS(rs, 7)]; + T12 = Ip[WS(rs, 2)]; + T13 = T11 + T12; + T20 = T12 - T11; + } + { + E Tx, Ty, T1r, T1s; + Tx = Rm[WS(rs, 2)]; + Ty = Rp[WS(rs, 7)]; + Tz = Tx + Ty; + T10 = Tx - Ty; + T1r = Im[WS(rs, 2)]; + T1s = Ip[WS(rs, 7)]; + T1t = T1r + T1s; + T21 = T1s - T1r; + } + TA = Tw + Tz; + T4b = T10 + T13; + T4i = T1q - T1t; + T14 = T10 - T13; + T1u = T1q + T1t; + T3D = Tw - Tz; + T3K = T20 - T21; + T22 = T20 + T21; + } + { + E Th, T1f, TS, T1T, Tk, TP, T1i, T1U; + { + E Tf, Tg, TQ, TR; + Tf = Rm[WS(rs, 3)]; + Tg = Rp[WS(rs, 6)]; + Th = Tf + Tg; + T1f = Tf - Tg; + TQ = Im[WS(rs, 3)]; + TR = Ip[WS(rs, 6)]; + TS = TQ + TR; + T1T = TR - TQ; + } + { + E Ti, Tj, T1g, T1h; + Ti = Rp[WS(rs, 1)]; + Tj = Rm[WS(rs, 8)]; + Tk = Ti + Tj; + TP = Ti - Tj; + T1g = Ip[WS(rs, 1)]; + T1h = Im[WS(rs, 8)]; + T1i = T1g + T1h; + T1U = T1g - T1h; + } + Tl = Th + Tk; + T48 = TP + TS; + T4l = T1f + T1i; + TT = TP - TS; + T1j = T1f - T1i; + T3A = Th - Tk; + T3N = T1T - T1U; + T1V = T1T + T1U; + } + T27 = T25 + T26; + T2o = Tt - TA; + T3T = T25 - T26; + T41 = T3z - T3A; + T2p = Te - Tl; + { + E T1L, T1M, T1k, T1v; + T40 = T3C - T3D; + T1L = TO - TT; + T1M = TZ - T14; + T1N = FMA(KP618033988, T1M, T1L); + T2Q = FNMS(KP618033988, T1L, T1M); + T1k = T1e - T1j; + T1v = T1p - T1u; + T1w = FMA(KP618033988, T1v, T1k); + T2L = FNMS(KP618033988, T1k, T1v); + { + E T4j, T4m, T4y, T4z; + T4j = T4h - T4i; + T4m = T4k - T4l; + T4n = FNMS(KP618033988, T4m, T4j); + T59 = FMA(KP618033988, T4j, T4m); + T4y = T4a + T4b; + T4z = T47 + T48; + T4A = FNMS(KP618033988, T4z, T4y); + T5e = FMA(KP618033988, T4y, T4z); + } + } + { + E T3L, T3O, T4s, T4t; + { + E T1W, T23, T2f, T2g; + T1W = T1S + T1V; + T23 = T1Z + T22; + T24 = T1W + T23; + T2m = T1W - T23; + T2f = T1Z - T22; + T2g = T1S - T1V; + T2h = FNMS(KP618033988, T2g, T2f); + T2Z = FMA(KP618033988, T2f, T2g); + } + T3L = T3J - T3K; + T3O = T3M - T3N; + T3P = FNMS(KP618033988, T3O, T3L); + T4J = FMA(KP618033988, T3L, T3O); + { + E T3U, T3V, Tm, TB; + T3U = T3M + T3N; + T3V = T3J + T3K; + T3W = T3U + T3V; + T3Y = T3U - T3V; + T7 = T3 + T6; + Tm = Te + Tl; + TB = Tt + TA; + TC = Tm + TB; + T2c = FNMS(KP250000000, TC, T7); + T2d = Tm - TB; + } + { + E T3B, T3E, T49, T4c; + T3y = T3 - T6; + T3B = T3z + T3A; + T3E = T3C + T3D; + T3F = T3B + T3E; + T3G = FNMS(KP250000000, T3F, T3y); + T3H = T3B - T3E; + T46 = TI - TF; + T49 = T47 - T48; + T4c = T4a - T4b; + T4d = T49 + T4c; + T4e = FNMS(KP250000000, T4d, T46); + T4f = T49 - T4c; + } + T4r = T1A + T1D; + T4s = T4k + T4l; + T4t = T4h + T4i; + T4u = T4s + T4t; + T4v = FNMS(KP250000000, T4u, T4r); + T4w = T4s - T4t; + { + E T1F, T1G, TU, T15; + T1E = T1A - T1D; + T1F = T1e + T1j; + T1G = T1p + T1u; + T1H = T1F + T1G; + T1I = FNMS(KP250000000, T1H, T1E); + T1J = T1F - T1G; + TJ = TF + TI; + TU = TO + TT; + T15 = TZ + T14; + T16 = TU + T15; + T17 = FNMS(KP250000000, T16, TJ); + T18 = TU - T15; + } + } + } + { + E TD, T28, T3o, T3r, T3p, T3v, T2r, T3l, T2H, T35, T2b, T2j, T2k, T2z, T2D; + E T2F, T2G, T2T, T2X, T31, T32, T3d, T3h, T3j, T3k, T3t, T1x, T2u, T1O, T2x; + E T1y, T29, T2v, T2B, T2M, T38, T2R, T3b, T2N, T2V, T39, T3f, T3n, T1P, T2a; + E T1z; + TD = T7 + TC; + T28 = T24 + T27; + T3o = TJ + T16; + T3r = T1H + T1E; + T3n = W[8]; + T3p = T3n * T3o; + T3v = T3n * T3r; + { + E T2q, T34, T2n, T33, T2l; + T2q = FNMS(KP618033988, T2p, T2o); + T34 = FMA(KP618033988, T2o, T2p); + T2l = FNMS(KP250000000, T24, T27); + T2n = FNMS(KP559016994, T2m, T2l); + T33 = FMA(KP559016994, T2m, T2l); + T2r = FMA(KP951056516, T2q, T2n); + T3l = FNMS(KP951056516, T34, T33); + T2H = FNMS(KP951056516, T2q, T2n); + T35 = FMA(KP951056516, T34, T33); + } + { + E T2i, T2E, T2e, T30, T3i, T2Y; + T2e = FNMS(KP559016994, T2d, T2c); + T2i = FNMS(KP951056516, T2h, T2e); + T2E = FMA(KP951056516, T2h, T2e); + T2b = W[14]; + T2j = T2b * T2i; + T2k = W[15]; + T2z = T2k * T2i; + T2D = W[22]; + T2F = T2D * T2E; + T2G = W[23]; + T2T = T2G * T2E; + T2Y = FMA(KP559016994, T2d, T2c); + T30 = FNMS(KP951056516, T2Z, T2Y); + T3i = FMA(KP951056516, T2Z, T2Y); + T2X = W[30]; + T31 = T2X * T30; + T32 = W[31]; + T3d = T32 * T30; + T3h = W[6]; + T3j = T3h * T3i; + T3k = W[7]; + T3t = T3k * T3i; + } + { + E T19, T1K, TE, T2t; + T19 = FMA(KP559016994, T18, T17); + T1x = FMA(KP951056516, T1w, T19); + T2u = FNMS(KP951056516, T1w, T19); + T1K = FMA(KP559016994, T1J, T1I); + T1O = FNMS(KP951056516, T1N, T1K); + T2x = FMA(KP951056516, T1N, T1K); + TE = W[0]; + T1y = TE * T1x; + T29 = TE * T1O; + T2t = W[16]; + T2v = T2t * T2u; + T2B = T2t * T2x; + } + { + E T2K, T2P, T2J, T37; + T2K = FNMS(KP559016994, T18, T17); + T2M = FMA(KP951056516, T2L, T2K); + T38 = FNMS(KP951056516, T2L, T2K); + T2P = FNMS(KP559016994, T1J, T1I); + T2R = FNMS(KP951056516, T2Q, T2P); + T3b = FMA(KP951056516, T2Q, T2P); + T2J = W[24]; + T2N = T2J * T2M; + T2V = T2J * T2R; + T37 = W[32]; + T39 = T37 * T38; + T3f = T37 * T3b; + } + T1z = W[1]; + T1P = FMA(T1z, T1O, T1y); + T2a = FNMS(T1z, T1x, T29); + Rp[0] = TD - T1P; + Ip[0] = T28 + T2a; + Rm[0] = TD + T1P; + Im[0] = T2a - T28; + { + E T3m, T3u, T3s, T3w, T3q; + T3m = FNMS(T3k, T3l, T3j); + T3u = FMA(T3h, T3l, T3t); + T3q = W[9]; + T3s = FMA(T3q, T3r, T3p); + T3w = FNMS(T3q, T3o, T3v); + Rp[WS(rs, 2)] = T3m - T3s; + Ip[WS(rs, 2)] = T3u + T3w; + Rm[WS(rs, 2)] = T3m + T3s; + Im[WS(rs, 2)] = T3w - T3u; + } + { + E T2s, T2A, T2y, T2C, T2w; + T2s = FNMS(T2k, T2r, T2j); + T2A = FMA(T2b, T2r, T2z); + T2w = W[17]; + T2y = FMA(T2w, T2x, T2v); + T2C = FNMS(T2w, T2u, T2B); + Rp[WS(rs, 4)] = T2s - T2y; + Ip[WS(rs, 4)] = T2A + T2C; + Rm[WS(rs, 4)] = T2s + T2y; + Im[WS(rs, 4)] = T2C - T2A; + } + { + E T2I, T2U, T2S, T2W, T2O; + T2I = FNMS(T2G, T2H, T2F); + T2U = FMA(T2D, T2H, T2T); + T2O = W[25]; + T2S = FMA(T2O, T2R, T2N); + T2W = FNMS(T2O, T2M, T2V); + Rp[WS(rs, 6)] = T2I - T2S; + Ip[WS(rs, 6)] = T2U + T2W; + Rm[WS(rs, 6)] = T2I + T2S; + Im[WS(rs, 6)] = T2W - T2U; + } + { + E T36, T3e, T3c, T3g, T3a; + T36 = FNMS(T32, T35, T31); + T3e = FMA(T2X, T35, T3d); + T3a = W[33]; + T3c = FMA(T3a, T3b, T39); + T3g = FNMS(T3a, T38, T3f); + Rp[WS(rs, 8)] = T36 - T3c; + Ip[WS(rs, 8)] = T3e + T3g; + Rm[WS(rs, 8)] = T36 + T3c; + Im[WS(rs, 8)] = T3g - T3e; + } + } + { + E T55, T51, T53, T54, T5h, T5I, T5L, T5J, T5P, T43, T5F, T4P, T5p, T3x, T3R; + E T3S, T4D, T5l, T5n, T5o, T5x, T4H, T4L, T4M, T4X, T5B, T5D, T5E, T5N, T4o; + E T4S, T4B, T4V, T4p, T4F, T4T, T4Z, T5a, T5s, T5f, T5v, T5b, T5j, T5t, T5z; + E T52, T5H; + T55 = T3W + T3T; + T52 = T3y + T3F; + T51 = W[18]; + T53 = T51 * T52; + T54 = W[19]; + T5h = T54 * T52; + T5I = T46 + T4d; + T5L = T4u + T4r; + T5H = W[28]; + T5J = T5H * T5I; + T5P = T5H * T5L; + { + E T42, T4O, T3Z, T4N, T3X; + T42 = FNMS(KP618033988, T41, T40); + T4O = FMA(KP618033988, T40, T41); + T3X = FNMS(KP250000000, T3W, T3T); + T3Z = FNMS(KP559016994, T3Y, T3X); + T4N = FMA(KP559016994, T3Y, T3X); + T43 = FNMS(KP951056516, T42, T3Z); + T5F = FNMS(KP951056516, T4O, T4N); + T4P = FMA(KP951056516, T4O, T4N); + T5p = FMA(KP951056516, T42, T3Z); + } + { + E T3Q, T5m, T3I, T4K, T5C, T4I; + T3I = FNMS(KP559016994, T3H, T3G); + T3Q = FMA(KP951056516, T3P, T3I); + T5m = FNMS(KP951056516, T3P, T3I); + T3x = W[2]; + T3R = T3x * T3Q; + T3S = W[3]; + T4D = T3S * T3Q; + T5l = W[34]; + T5n = T5l * T5m; + T5o = W[35]; + T5x = T5o * T5m; + T4I = FMA(KP559016994, T3H, T3G); + T4K = FNMS(KP951056516, T4J, T4I); + T5C = FMA(KP951056516, T4J, T4I); + T4H = W[10]; + T4L = T4H * T4K; + T4M = W[11]; + T4X = T4M * T4K; + T5B = W[26]; + T5D = T5B * T5C; + T5E = W[27]; + T5N = T5E * T5C; + } + { + E T4g, T4x, T45, T4R; + T4g = FNMS(KP559016994, T4f, T4e); + T4o = FMA(KP951056516, T4n, T4g); + T4S = FNMS(KP951056516, T4n, T4g); + T4x = FNMS(KP559016994, T4w, T4v); + T4B = FNMS(KP951056516, T4A, T4x); + T4V = FMA(KP951056516, T4A, T4x); + T45 = W[4]; + T4p = T45 * T4o; + T4F = T45 * T4B; + T4R = W[12]; + T4T = T4R * T4S; + T4Z = T4R * T4V; + } + { + E T58, T5d, T57, T5r; + T58 = FMA(KP559016994, T4f, T4e); + T5a = FMA(KP951056516, T59, T58); + T5s = FNMS(KP951056516, T59, T58); + T5d = FMA(KP559016994, T4w, T4v); + T5f = FNMS(KP951056516, T5e, T5d); + T5v = FMA(KP951056516, T5e, T5d); + T57 = W[20]; + T5b = T57 * T5a; + T5j = T57 * T5f; + T5r = W[36]; + T5t = T5r * T5s; + T5z = T5r * T5v; + } + { + E T44, T4E, T4C, T4G, T4q; + T44 = FNMS(T3S, T43, T3R); + T4E = FMA(T3x, T43, T4D); + T4q = W[5]; + T4C = FMA(T4q, T4B, T4p); + T4G = FNMS(T4q, T4o, T4F); + Rp[WS(rs, 1)] = T44 - T4C; + Ip[WS(rs, 1)] = T4E + T4G; + Rm[WS(rs, 1)] = T44 + T4C; + Im[WS(rs, 1)] = T4G - T4E; + } + { + E T5G, T5O, T5M, T5Q, T5K; + T5G = FNMS(T5E, T5F, T5D); + T5O = FMA(T5B, T5F, T5N); + T5K = W[29]; + T5M = FMA(T5K, T5L, T5J); + T5Q = FNMS(T5K, T5I, T5P); + Rp[WS(rs, 7)] = T5G - T5M; + Ip[WS(rs, 7)] = T5O + T5Q; + Rm[WS(rs, 7)] = T5G + T5M; + Im[WS(rs, 7)] = T5Q - T5O; + } + { + E T4Q, T4Y, T4W, T50, T4U; + T4Q = FNMS(T4M, T4P, T4L); + T4Y = FMA(T4H, T4P, T4X); + T4U = W[13]; + T4W = FMA(T4U, T4V, T4T); + T50 = FNMS(T4U, T4S, T4Z); + Rp[WS(rs, 3)] = T4Q - T4W; + Ip[WS(rs, 3)] = T4Y + T50; + Rm[WS(rs, 3)] = T4Q + T4W; + Im[WS(rs, 3)] = T50 - T4Y; + } + { + E T56, T5i, T5g, T5k, T5c; + T56 = FNMS(T54, T55, T53); + T5i = FMA(T51, T55, T5h); + T5c = W[21]; + T5g = FMA(T5c, T5f, T5b); + T5k = FNMS(T5c, T5a, T5j); + Rp[WS(rs, 5)] = T56 - T5g; + Ip[WS(rs, 5)] = T5i + T5k; + Rm[WS(rs, 5)] = T56 + T5g; + Im[WS(rs, 5)] = T5k - T5i; + } + { + E T5q, T5y, T5w, T5A, T5u; + T5q = FNMS(T5o, T5p, T5n); + T5y = FMA(T5l, T5p, T5x); + T5u = W[37]; + T5w = FMA(T5u, T5v, T5t); + T5A = FNMS(T5u, T5s, T5z); + Rp[WS(rs, 9)] = T5q - T5w; + Ip[WS(rs, 9)] = T5y + T5A; + Rm[WS(rs, 9)] = T5q + T5w; + Im[WS(rs, 9)] = T5A - T5y; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 20}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 20, "hc2cbdft_20", twinstr, &GENUS, {176, 38, 110, 0} }; + +void X(codelet_hc2cbdft_20) (planner *p) { + X(khc2c_register) (p, hc2cbdft_20, &desc, HC2C_VIA_DFT); +} +#else + +/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cbdft_20 -include rdft/scalar/hc2cb.h */ + +/* + * This function contains 286 FP additions, 124 FP multiplications, + * (or, 224 additions, 62 multiplications, 62 fused multiply/add), + * 89 stack variables, 4 constants, and 80 memory accesses + */ +#include "rdft/scalar/hc2cb.h" + +static void hc2cbdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { + E T7, T3N, T4a, T16, T1G, T3g, T3D, T26, T1k, T3A, T3B, T1v, T2e, T48, T47; + E T2d, T1L, T43, T40, T1K, T2l, T3t, T2m, T3w, T3n, T3p, TC, T2b, T4d, T4f; + E T23, T2j, T1B, T1H, T3U, T3W, T3G, T3I, T11, T17; + { + E T3, T1C, T15, T24, T6, T12, T1F, T25; + { + E T1, T2, T13, T14; + T1 = Rp[0]; + T2 = Rm[WS(rs, 9)]; + T3 = T1 + T2; + T1C = T1 - T2; + T13 = Ip[0]; + T14 = Im[WS(rs, 9)]; + T15 = T13 + T14; + T24 = T13 - T14; + } + { + E T4, T5, T1D, T1E; + T4 = Rp[WS(rs, 5)]; + T5 = Rm[WS(rs, 4)]; + T6 = T4 + T5; + T12 = T4 - T5; + T1D = Ip[WS(rs, 5)]; + T1E = Im[WS(rs, 4)]; + T1F = T1D + T1E; + T25 = T1D - T1E; + } + T7 = T3 + T6; + T3N = T15 - T12; + T4a = T1C + T1F; + T16 = T12 + T15; + T1G = T1C - T1F; + T3g = T3 - T6; + T3D = T24 - T25; + T26 = T24 + T25; + } + { + E Te, T3O, T3Y, TJ, T1e, T3h, T3r, T1R, TA, T3S, T42, TZ, T1u, T3l, T3v; + E T21, Tl, T3P, T3Z, TO, T1j, T3i, T3s, T1U, Tt, T3R, T41, TU, T1p, T3k; + E T3u, T1Y; + { + E Ta, T1a, TI, T1P, Td, TF, T1d, T1Q; + { + E T8, T9, TG, TH; + T8 = Rp[WS(rs, 4)]; + T9 = Rm[WS(rs, 5)]; + Ta = T8 + T9; + T1a = T8 - T9; + TG = Ip[WS(rs, 4)]; + TH = Im[WS(rs, 5)]; + TI = TG + TH; + T1P = TG - TH; + } + { + E Tb, Tc, T1b, T1c; + Tb = Rp[WS(rs, 9)]; + Tc = Rm[0]; + Td = Tb + Tc; + TF = Tb - Tc; + T1b = Ip[WS(rs, 9)]; + T1c = Im[0]; + T1d = T1b + T1c; + T1Q = T1b - T1c; + } + Te = Ta + Td; + T3O = TI - TF; + T3Y = T1a + T1d; + TJ = TF + TI; + T1e = T1a - T1d; + T3h = Ta - Td; + T3r = T1P - T1Q; + T1R = T1P + T1Q; + } + { + E Tw, T1q, TY, T1Z, Tz, TV, T1t, T20; + { + E Tu, Tv, TW, TX; + Tu = Rm[WS(rs, 7)]; + Tv = Rp[WS(rs, 2)]; + Tw = Tu + Tv; + T1q = Tu - Tv; + TW = Im[WS(rs, 7)]; + TX = Ip[WS(rs, 2)]; + TY = TW + TX; + T1Z = TX - TW; + } + { + E Tx, Ty, T1r, T1s; + Tx = Rm[WS(rs, 2)]; + Ty = Rp[WS(rs, 7)]; + Tz = Tx + Ty; + TV = Tx - Ty; + T1r = Im[WS(rs, 2)]; + T1s = Ip[WS(rs, 7)]; + T1t = T1r + T1s; + T20 = T1s - T1r; + } + TA = Tw + Tz; + T3S = TV + TY; + T42 = T1q - T1t; + TZ = TV - TY; + T1u = T1q + T1t; + T3l = Tw - Tz; + T3v = T1Z - T20; + T21 = T1Z + T20; + } + { + E Th, T1f, TN, T1S, Tk, TK, T1i, T1T; + { + E Tf, Tg, TL, TM; + Tf = Rm[WS(rs, 3)]; + Tg = Rp[WS(rs, 6)]; + Th = Tf + Tg; + T1f = Tf - Tg; + TL = Im[WS(rs, 3)]; + TM = Ip[WS(rs, 6)]; + TN = TL + TM; + T1S = TM - TL; + } + { + E Ti, Tj, T1g, T1h; + Ti = Rp[WS(rs, 1)]; + Tj = Rm[WS(rs, 8)]; + Tk = Ti + Tj; + TK = Ti - Tj; + T1g = Ip[WS(rs, 1)]; + T1h = Im[WS(rs, 8)]; + T1i = T1g + T1h; + T1T = T1g - T1h; + } + Tl = Th + Tk; + T3P = TK + TN; + T3Z = T1f + T1i; + TO = TK - TN; + T1j = T1f - T1i; + T3i = Th - Tk; + T3s = T1S - T1T; + T1U = T1S + T1T; + } + { + E Tp, T1l, TT, T1W, Ts, TQ, T1o, T1X; + { + E Tn, To, TR, TS; + Tn = Rp[WS(rs, 8)]; + To = Rm[WS(rs, 1)]; + Tp = Tn + To; + T1l = Tn - To; + TR = Ip[WS(rs, 8)]; + TS = Im[WS(rs, 1)]; + TT = TR + TS; + T1W = TR - TS; + } + { + E Tq, Tr, T1m, T1n; + Tq = Rm[WS(rs, 6)]; + Tr = Rp[WS(rs, 3)]; + Ts = Tq + Tr; + TQ = Tq - Tr; + T1m = Im[WS(rs, 6)]; + T1n = Ip[WS(rs, 3)]; + T1o = T1m + T1n; + T1X = T1n - T1m; + } + Tt = Tp + Ts; + T3R = TT - TQ; + T41 = T1l - T1o; + TU = TQ + TT; + T1p = T1l + T1o; + T3k = Tp - Ts; + T3u = T1W - T1X; + T1Y = T1W + T1X; + } + T1k = T1e - T1j; + T3A = T3h - T3i; + T3B = T3k - T3l; + T1v = T1p - T1u; + T2e = T1Y - T21; + T48 = T3R + T3S; + T47 = T3O + T3P; + T2d = T1R - T1U; + T1L = TU - TZ; + T43 = T41 - T42; + T40 = T3Y - T3Z; + T1K = TJ - TO; + T2l = Te - Tl; + T3t = T3r - T3s; + T2m = Tt - TA; + T3w = T3u - T3v; + { + E T3j, T3m, Tm, TB; + T3j = T3h + T3i; + T3m = T3k + T3l; + T3n = T3j + T3m; + T3p = KP559016994 * (T3j - T3m); + Tm = Te + Tl; + TB = Tt + TA; + TC = Tm + TB; + T2b = KP559016994 * (Tm - TB); + } + { + E T4b, T4c, T3Q, T3T; + T4b = T3Y + T3Z; + T4c = T41 + T42; + T4d = T4b + T4c; + T4f = KP559016994 * (T4b - T4c); + { + E T1V, T22, T1z, T1A; + T1V = T1R + T1U; + T22 = T1Y + T21; + T23 = T1V + T22; + T2j = KP559016994 * (T1V - T22); + T1z = T1e + T1j; + T1A = T1p + T1u; + T1B = KP559016994 * (T1z - T1A); + T1H = T1z + T1A; + } + T3Q = T3O - T3P; + T3T = T3R - T3S; + T3U = T3Q + T3T; + T3W = KP559016994 * (T3Q - T3T); + { + E T3E, T3F, TP, T10; + T3E = T3r + T3s; + T3F = T3u + T3v; + T3G = T3E + T3F; + T3I = KP559016994 * (T3E - T3F); + TP = TJ + TO; + T10 = TU + TZ; + T11 = KP559016994 * (TP - T10); + T17 = TP + T10; + } + } + } + { + E TD, T27, T3c, T3e, T2o, T36, T2A, T2U, T1N, T2Z, T2t, T2J, T1x, T2X, T2r; + E T2F, T2g, T34, T2y, T2Q; + TD = T7 + TC; + T27 = T23 + T26; + { + E T39, T3b, T38, T3a; + T39 = T16 + T17; + T3b = T1H + T1G; + T38 = W[8]; + T3a = W[9]; + T3c = FMA(T38, T39, T3a * T3b); + T3e = FNMS(T3a, T39, T38 * T3b); + } + { + E T2n, T2S, T2k, T2T, T2i; + T2n = FNMS(KP951056516, T2m, KP587785252 * T2l); + T2S = FMA(KP951056516, T2l, KP587785252 * T2m); + T2i = FNMS(KP250000000, T23, T26); + T2k = T2i - T2j; + T2T = T2j + T2i; + T2o = T2k - T2n; + T36 = T2T - T2S; + T2A = T2n + T2k; + T2U = T2S + T2T; + } + { + E T1M, T2H, T1J, T2I, T1I; + T1M = FMA(KP951056516, T1K, KP587785252 * T1L); + T2H = FNMS(KP951056516, T1L, KP587785252 * T1K); + T1I = FNMS(KP250000000, T1H, T1G); + T1J = T1B + T1I; + T2I = T1I - T1B; + T1N = T1J - T1M; + T2Z = T2I - T2H; + T2t = T1M + T1J; + T2J = T2H + T2I; + } + { + E T1w, T2E, T19, T2D, T18; + T1w = FMA(KP951056516, T1k, KP587785252 * T1v); + T2E = FNMS(KP951056516, T1v, KP587785252 * T1k); + T18 = FNMS(KP250000000, T17, T16); + T19 = T11 + T18; + T2D = T18 - T11; + T1x = T19 + T1w; + T2X = T2D + T2E; + T2r = T19 - T1w; + T2F = T2D - T2E; + } + { + E T2f, T2P, T2c, T2O, T2a; + T2f = FNMS(KP951056516, T2e, KP587785252 * T2d); + T2P = FMA(KP951056516, T2d, KP587785252 * T2e); + T2a = FNMS(KP250000000, TC, T7); + T2c = T2a - T2b; + T2O = T2b + T2a; + T2g = T2c + T2f; + T34 = T2O + T2P; + T2y = T2c - T2f; + T2Q = T2O - T2P; + } + { + E T1O, T28, TE, T1y; + TE = W[0]; + T1y = W[1]; + T1O = FMA(TE, T1x, T1y * T1N); + T28 = FNMS(T1y, T1x, TE * T1N); + Rp[0] = TD - T1O; + Ip[0] = T27 + T28; + Rm[0] = TD + T1O; + Im[0] = T28 - T27; + } + { + E T37, T3d, T33, T35; + T33 = W[6]; + T35 = W[7]; + T37 = FNMS(T35, T36, T33 * T34); + T3d = FMA(T35, T34, T33 * T36); + Rp[WS(rs, 2)] = T37 - T3c; + Ip[WS(rs, 2)] = T3d + T3e; + Rm[WS(rs, 2)] = T37 + T3c; + Im[WS(rs, 2)] = T3e - T3d; + } + { + E T2p, T2v, T2u, T2w; + { + E T29, T2h, T2q, T2s; + T29 = W[14]; + T2h = W[15]; + T2p = FNMS(T2h, T2o, T29 * T2g); + T2v = FMA(T2h, T2g, T29 * T2o); + T2q = W[16]; + T2s = W[17]; + T2u = FMA(T2q, T2r, T2s * T2t); + T2w = FNMS(T2s, T2r, T2q * T2t); + } + Rp[WS(rs, 4)] = T2p - T2u; + Ip[WS(rs, 4)] = T2v + T2w; + Rm[WS(rs, 4)] = T2p + T2u; + Im[WS(rs, 4)] = T2w - T2v; + } + { + E T2B, T2L, T2K, T2M; + { + E T2x, T2z, T2C, T2G; + T2x = W[22]; + T2z = W[23]; + T2B = FNMS(T2z, T2A, T2x * T2y); + T2L = FMA(T2z, T2y, T2x * T2A); + T2C = W[24]; + T2G = W[25]; + T2K = FMA(T2C, T2F, T2G * T2J); + T2M = FNMS(T2G, T2F, T2C * T2J); + } + Rp[WS(rs, 6)] = T2B - T2K; + Ip[WS(rs, 6)] = T2L + T2M; + Rm[WS(rs, 6)] = T2B + T2K; + Im[WS(rs, 6)] = T2M - T2L; + } + { + E T2V, T31, T30, T32; + { + E T2N, T2R, T2W, T2Y; + T2N = W[30]; + T2R = W[31]; + T2V = FNMS(T2R, T2U, T2N * T2Q); + T31 = FMA(T2R, T2Q, T2N * T2U); + T2W = W[32]; + T2Y = W[33]; + T30 = FMA(T2W, T2X, T2Y * T2Z); + T32 = FNMS(T2Y, T2X, T2W * T2Z); + } + Rp[WS(rs, 8)] = T2V - T30; + Ip[WS(rs, 8)] = T31 + T32; + Rm[WS(rs, 8)] = T2V + T30; + Im[WS(rs, 8)] = T32 - T31; + } + } + { + E T4F, T4P, T5c, T5e, T3y, T54, T4o, T4S, T4h, T4Z, T4x, T4N, T45, T4X, T4v; + E T4J, T3K, T56, T4s, T4U; + { + E T4C, T4E, T4B, T4D; + T4C = T3g + T3n; + T4E = T3G + T3D; + T4B = W[18]; + T4D = W[19]; + T4F = FNMS(T4D, T4E, T4B * T4C); + T4P = FMA(T4D, T4C, T4B * T4E); + } + { + E T59, T5b, T58, T5a; + T59 = T3N + T3U; + T5b = T4d + T4a; + T58 = W[28]; + T5a = W[29]; + T5c = FMA(T58, T59, T5a * T5b); + T5e = FNMS(T5a, T59, T58 * T5b); + } + { + E T3x, T4n, T3q, T4m, T3o; + T3x = FNMS(KP951056516, T3w, KP587785252 * T3t); + T4n = FMA(KP951056516, T3t, KP587785252 * T3w); + T3o = FNMS(KP250000000, T3n, T3g); + T3q = T3o - T3p; + T4m = T3p + T3o; + T3y = T3q - T3x; + T54 = T4m + T4n; + T4o = T4m - T4n; + T4S = T3q + T3x; + } + { + E T49, T4M, T4g, T4L, T4e; + T49 = FNMS(KP951056516, T48, KP587785252 * T47); + T4M = FMA(KP951056516, T47, KP587785252 * T48); + T4e = FNMS(KP250000000, T4d, T4a); + T4g = T4e - T4f; + T4L = T4f + T4e; + T4h = T49 + T4g; + T4Z = T4M + T4L; + T4x = T4g - T49; + T4N = T4L - T4M; + } + { + E T44, T4I, T3X, T4H, T3V; + T44 = FNMS(KP951056516, T43, KP587785252 * T40); + T4I = FMA(KP951056516, T40, KP587785252 * T43); + T3V = FNMS(KP250000000, T3U, T3N); + T3X = T3V - T3W; + T4H = T3W + T3V; + T45 = T3X - T44; + T4X = T4H - T4I; + T4v = T3X + T44; + T4J = T4H + T4I; + } + { + E T3C, T4q, T3J, T4r, T3H; + T3C = FNMS(KP951056516, T3B, KP587785252 * T3A); + T4q = FMA(KP951056516, T3A, KP587785252 * T3B); + T3H = FNMS(KP250000000, T3G, T3D); + T3J = T3H - T3I; + T4r = T3I + T3H; + T3K = T3C + T3J; + T56 = T4r - T4q; + T4s = T4q + T4r; + T4U = T3J - T3C; + } + { + E T4O, T4Q, T4G, T4K; + T4G = W[20]; + T4K = W[21]; + T4O = FMA(T4G, T4J, T4K * T4N); + T4Q = FNMS(T4K, T4J, T4G * T4N); + Rp[WS(rs, 5)] = T4F - T4O; + Ip[WS(rs, 5)] = T4P + T4Q; + Rm[WS(rs, 5)] = T4F + T4O; + Im[WS(rs, 5)] = T4Q - T4P; + } + { + E T57, T5d, T53, T55; + T53 = W[26]; + T55 = W[27]; + T57 = FNMS(T55, T56, T53 * T54); + T5d = FMA(T55, T54, T53 * T56); + Rp[WS(rs, 7)] = T57 - T5c; + Ip[WS(rs, 7)] = T5d + T5e; + Rm[WS(rs, 7)] = T57 + T5c; + Im[WS(rs, 7)] = T5e - T5d; + } + { + E T3L, T4j, T4i, T4k; + { + E T3f, T3z, T3M, T46; + T3f = W[2]; + T3z = W[3]; + T3L = FNMS(T3z, T3K, T3f * T3y); + T4j = FMA(T3z, T3y, T3f * T3K); + T3M = W[4]; + T46 = W[5]; + T4i = FMA(T3M, T45, T46 * T4h); + T4k = FNMS(T46, T45, T3M * T4h); + } + Rp[WS(rs, 1)] = T3L - T4i; + Ip[WS(rs, 1)] = T4j + T4k; + Rm[WS(rs, 1)] = T3L + T4i; + Im[WS(rs, 1)] = T4k - T4j; + } + { + E T4t, T4z, T4y, T4A; + { + E T4l, T4p, T4u, T4w; + T4l = W[10]; + T4p = W[11]; + T4t = FNMS(T4p, T4s, T4l * T4o); + T4z = FMA(T4p, T4o, T4l * T4s); + T4u = W[12]; + T4w = W[13]; + T4y = FMA(T4u, T4v, T4w * T4x); + T4A = FNMS(T4w, T4v, T4u * T4x); + } + Rp[WS(rs, 3)] = T4t - T4y; + Ip[WS(rs, 3)] = T4z + T4A; + Rm[WS(rs, 3)] = T4t + T4y; + Im[WS(rs, 3)] = T4A - T4z; + } + { + E T4V, T51, T50, T52; + { + E T4R, T4T, T4W, T4Y; + T4R = W[34]; + T4T = W[35]; + T4V = FNMS(T4T, T4U, T4R * T4S); + T51 = FMA(T4T, T4S, T4R * T4U); + T4W = W[36]; + T4Y = W[37]; + T50 = FMA(T4W, T4X, T4Y * T4Z); + T52 = FNMS(T4Y, T4X, T4W * T4Z); + } + Rp[WS(rs, 9)] = T4V - T50; + Ip[WS(rs, 9)] = T51 + T52; + Rm[WS(rs, 9)] = T4V + T50; + Im[WS(rs, 9)] = T52 - T51; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 20}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 20, "hc2cbdft_20", twinstr, &GENUS, {224, 62, 62, 0} }; + +void X(codelet_hc2cbdft_20) (planner *p) { + X(khc2c_register) (p, hc2cbdft_20, &desc, HC2C_VIA_DFT); +} +#endif