Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cb/hc2cbdft_16.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cb/hc2cbdft_16.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,892 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:07:58 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include rdft/scalar/hc2cb.h */ + +/* + * This function contains 206 FP additions, 100 FP multiplications, + * (or, 136 additions, 30 multiplications, 70 fused multiply/add), + * 66 stack variables, 3 constants, and 64 memory accesses + */ +#include "rdft/scalar/hc2cb.h" + +static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP414213562, +0.414213562373095048801688724209698078569671875); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { + E Tf, T20, T32, T3Q, T3f, T3V, TN, T2a, T1m, T2f, T2G, T3G, T2T, T3L, T1F; + E T26, T2J, T2M, T2N, T2U, T2V, T3H, Tu, T25, T3i, T3R, T1a, T2g, T1y, T21; + E T39, T3W, T1p, T2b; + { + E T3, T1e, TA, T1C, T6, Tx, T1h, T1D, Td, T1A, TL, T1k, Ta, T1z, TG; + E T1j; + { + E T1, T2, T1f, T1g; + T1 = Rp[0]; + T2 = Rm[WS(rs, 7)]; + T3 = T1 + T2; + T1e = T1 - T2; + { + E Ty, Tz, T4, T5; + Ty = Ip[0]; + Tz = Im[WS(rs, 7)]; + TA = Ty + Tz; + T1C = Ty - Tz; + T4 = Rp[WS(rs, 4)]; + T5 = Rm[WS(rs, 3)]; + T6 = T4 + T5; + Tx = T4 - T5; + } + T1f = Ip[WS(rs, 4)]; + T1g = Im[WS(rs, 3)]; + T1h = T1f + T1g; + T1D = T1f - T1g; + { + E Tb, Tc, TH, TI, TJ, TK; + Tb = Rm[WS(rs, 1)]; + Tc = Rp[WS(rs, 6)]; + TH = Tb - Tc; + TI = Im[WS(rs, 1)]; + TJ = Ip[WS(rs, 6)]; + TK = TI + TJ; + Td = Tb + Tc; + T1A = TJ - TI; + TL = TH + TK; + T1k = TH - TK; + } + { + E T8, T9, TC, TD, TE, TF; + T8 = Rp[WS(rs, 2)]; + T9 = Rm[WS(rs, 5)]; + TC = T8 - T9; + TD = Ip[WS(rs, 2)]; + TE = Im[WS(rs, 5)]; + TF = TD + TE; + Ta = T8 + T9; + T1z = TD - TE; + TG = TC + TF; + T1j = TC - TF; + } + } + { + E T7, Te, T30, T31; + T7 = T3 + T6; + Te = Ta + Td; + Tf = T7 + Te; + T20 = T7 - Te; + T30 = TA - Tx; + T31 = T1j - T1k; + T32 = FMA(KP707106781, T31, T30); + T3Q = FNMS(KP707106781, T31, T30); + } + { + E T3d, T3e, TB, TM; + T3d = T1e + T1h; + T3e = TG + TL; + T3f = FNMS(KP707106781, T3e, T3d); + T3V = FMA(KP707106781, T3e, T3d); + TB = Tx + TA; + TM = TG - TL; + TN = FMA(KP707106781, TM, TB); + T2a = FNMS(KP707106781, TM, TB); + } + { + E T1i, T1l, T2E, T2F; + T1i = T1e - T1h; + T1l = T1j + T1k; + T1m = FMA(KP707106781, T1l, T1i); + T2f = FNMS(KP707106781, T1l, T1i); + T2E = T3 - T6; + T2F = T1A - T1z; + T2G = T2E + T2F; + T3G = T2E - T2F; + } + { + E T2R, T2S, T1B, T1E; + T2R = Ta - Td; + T2S = T1C - T1D; + T2T = T2R + T2S; + T3L = T2S - T2R; + T1B = T1z + T1A; + T1E = T1C + T1D; + T1F = T1B + T1E; + T26 = T1E - T1B; + } + } + { + E Ti, T1s, Tl, T1t, TS, TX, T34, T33, T2I, T2H, Tp, T1v, Ts, T1w, T13; + E T18, T37, T36, T2L, T2K; + { + E TT, TR, TO, TW; + { + E Tg, Th, TP, TQ; + Tg = Rp[WS(rs, 1)]; + Th = Rm[WS(rs, 6)]; + Ti = Tg + Th; + TT = Tg - Th; + TP = Ip[WS(rs, 1)]; + TQ = Im[WS(rs, 6)]; + TR = TP + TQ; + T1s = TP - TQ; + } + { + E Tj, Tk, TU, TV; + Tj = Rp[WS(rs, 5)]; + Tk = Rm[WS(rs, 2)]; + Tl = Tj + Tk; + TO = Tj - Tk; + TU = Ip[WS(rs, 5)]; + TV = Im[WS(rs, 2)]; + TW = TU + TV; + T1t = TU - TV; + } + TS = TO + TR; + TX = TT - TW; + T34 = TR - TO; + T33 = TT + TW; + T2I = T1s - T1t; + T2H = Ti - Tl; + } + { + E T14, T12, TZ, T17; + { + E Tn, To, T10, T11; + Tn = Rm[0]; + To = Rp[WS(rs, 7)]; + Tp = Tn + To; + T14 = Tn - To; + T10 = Im[0]; + T11 = Ip[WS(rs, 7)]; + T12 = T10 + T11; + T1v = T11 - T10; + } + { + E Tq, Tr, T15, T16; + Tq = Rp[WS(rs, 3)]; + Tr = Rm[WS(rs, 4)]; + Ts = Tq + Tr; + TZ = Tq - Tr; + T15 = Ip[WS(rs, 3)]; + T16 = Im[WS(rs, 4)]; + T17 = T15 + T16; + T1w = T15 - T16; + } + T13 = TZ - T12; + T18 = T14 - T17; + T37 = TZ + T12; + T36 = T14 + T17; + T2L = T1v - T1w; + T2K = Tp - Ts; + } + T2J = T2H - T2I; + T2M = T2K + T2L; + T2N = T2J + T2M; + T2U = T2H + T2I; + T2V = T2L - T2K; + T3H = T2V - T2U; + { + E Tm, Tt, T3g, T3h; + Tm = Ti + Tl; + Tt = Tp + Ts; + Tu = Tm + Tt; + T25 = Tm - Tt; + T3g = FNMS(KP414213562, T33, T34); + T3h = FNMS(KP414213562, T36, T37); + T3i = T3g + T3h; + T3R = T3h - T3g; + } + { + E TY, T19, T1u, T1x; + TY = FMA(KP414213562, TX, TS); + T19 = FNMS(KP414213562, T18, T13); + T1a = TY + T19; + T2g = T19 - TY; + T1u = T1s + T1t; + T1x = T1v + T1w; + T1y = T1u + T1x; + T21 = T1x - T1u; + } + { + E T35, T38, T1n, T1o; + T35 = FMA(KP414213562, T34, T33); + T38 = FMA(KP414213562, T37, T36); + T39 = T35 - T38; + T3W = T35 + T38; + T1n = FNMS(KP414213562, TS, TX); + T1o = FMA(KP414213562, T13, T18); + T1p = T1n + T1o; + T2b = T1n - T1o; + } + } + { + E Tv, T1G, T1b, T1q, T1c, T1H, Tw, T1r, T1I, T1d; + Tv = Tf + Tu; + T1G = T1y + T1F; + T1b = FMA(KP923879532, T1a, TN); + T1q = FMA(KP923879532, T1p, T1m); + Tw = W[0]; + T1c = Tw * T1b; + T1H = Tw * T1q; + T1d = W[1]; + T1r = FMA(T1d, T1q, T1c); + T1I = FNMS(T1d, T1b, T1H); + Rp[0] = Tv - T1r; + Ip[0] = T1G + T1I; + Rm[0] = Tv + T1r; + Im[0] = T1I - T1G; + } + { + E T1N, T1J, T1L, T1M, T1V, T1Q, T1T, T1R, T1X, T1K, T1P; + T1N = T1F - T1y; + T1K = Tf - Tu; + T1J = W[14]; + T1L = T1J * T1K; + T1M = W[15]; + T1V = T1M * T1K; + T1Q = FNMS(KP923879532, T1a, TN); + T1T = FNMS(KP923879532, T1p, T1m); + T1P = W[16]; + T1R = T1P * T1Q; + T1X = T1P * T1T; + { + E T1O, T1W, T1U, T1Y, T1S; + T1O = FNMS(T1M, T1N, T1L); + T1W = FMA(T1J, T1N, T1V); + T1S = W[17]; + T1U = FMA(T1S, T1T, T1R); + T1Y = FNMS(T1S, T1Q, T1X); + Rp[WS(rs, 4)] = T1O - T1U; + Ip[WS(rs, 4)] = T1W + T1Y; + Rm[WS(rs, 4)] = T1O + T1U; + Im[WS(rs, 4)] = T1Y - T1W; + } + } + { + E T2r, T2n, T2p, T2q, T2z, T2u, T2x, T2v, T2B, T2o, T2t; + T2r = T26 - T25; + T2o = T20 - T21; + T2n = W[22]; + T2p = T2n * T2o; + T2q = W[23]; + T2z = T2q * T2o; + T2u = FNMS(KP923879532, T2b, T2a); + T2x = FNMS(KP923879532, T2g, T2f); + T2t = W[24]; + T2v = T2t * T2u; + T2B = T2t * T2x; + { + E T2s, T2A, T2y, T2C, T2w; + T2s = FNMS(T2q, T2r, T2p); + T2A = FMA(T2n, T2r, T2z); + T2w = W[25]; + T2y = FMA(T2w, T2x, T2v); + T2C = FNMS(T2w, T2u, T2B); + Rp[WS(rs, 6)] = T2s - T2y; + Ip[WS(rs, 6)] = T2A + T2C; + Rm[WS(rs, 6)] = T2s + T2y; + Im[WS(rs, 6)] = T2C - T2A; + } + } + { + E T27, T1Z, T23, T24, T2j, T2c, T2h, T2d, T2l, T22, T29; + T27 = T25 + T26; + T22 = T20 + T21; + T1Z = W[6]; + T23 = T1Z * T22; + T24 = W[7]; + T2j = T24 * T22; + T2c = FMA(KP923879532, T2b, T2a); + T2h = FMA(KP923879532, T2g, T2f); + T29 = W[8]; + T2d = T29 * T2c; + T2l = T29 * T2h; + { + E T28, T2k, T2i, T2m, T2e; + T28 = FNMS(T24, T27, T23); + T2k = FMA(T1Z, T27, T2j); + T2e = W[9]; + T2i = FMA(T2e, T2h, T2d); + T2m = FNMS(T2e, T2c, T2l); + Rp[WS(rs, 2)] = T28 - T2i; + Ip[WS(rs, 2)] = T2k + T2m; + Rm[WS(rs, 2)] = T28 + T2i; + Im[WS(rs, 2)] = T2m - T2k; + } + } + { + E T3N, T47, T43, T45, T46, T4f, T3F, T3J, T3K, T3Z, T3S, T3X, T3T, T41, T4a; + E T4d, T4b, T4h; + { + E T3M, T44, T3I, T3P, T49; + T3M = T2J - T2M; + T3N = FMA(KP707106781, T3M, T3L); + T47 = FNMS(KP707106781, T3M, T3L); + T44 = FNMS(KP707106781, T3H, T3G); + T43 = W[26]; + T45 = T43 * T44; + T46 = W[27]; + T4f = T46 * T44; + T3I = FMA(KP707106781, T3H, T3G); + T3F = W[10]; + T3J = T3F * T3I; + T3K = W[11]; + T3Z = T3K * T3I; + T3S = FMA(KP923879532, T3R, T3Q); + T3X = FNMS(KP923879532, T3W, T3V); + T3P = W[12]; + T3T = T3P * T3S; + T41 = T3P * T3X; + T4a = FNMS(KP923879532, T3R, T3Q); + T4d = FMA(KP923879532, T3W, T3V); + T49 = W[28]; + T4b = T49 * T4a; + T4h = T49 * T4d; + } + { + E T3O, T40, T3Y, T42, T3U; + T3O = FNMS(T3K, T3N, T3J); + T40 = FMA(T3F, T3N, T3Z); + T3U = W[13]; + T3Y = FMA(T3U, T3X, T3T); + T42 = FNMS(T3U, T3S, T41); + Rp[WS(rs, 3)] = T3O - T3Y; + Ip[WS(rs, 3)] = T40 + T42; + Rm[WS(rs, 3)] = T3O + T3Y; + Im[WS(rs, 3)] = T42 - T40; + } + { + E T48, T4g, T4e, T4i, T4c; + T48 = FNMS(T46, T47, T45); + T4g = FMA(T43, T47, T4f); + T4c = W[29]; + T4e = FMA(T4c, T4d, T4b); + T4i = FNMS(T4c, T4a, T4h); + Rp[WS(rs, 7)] = T48 - T4e; + Ip[WS(rs, 7)] = T4g + T4i; + Rm[WS(rs, 7)] = T48 + T4e; + Im[WS(rs, 7)] = T4i - T4g; + } + } + { + E T2X, T3t, T3p, T3r, T3s, T3B, T2D, T2P, T2Q, T3l, T3a, T3j, T3b, T3n, T3w; + E T3z, T3x, T3D; + { + E T2W, T3q, T2O, T2Z, T3v; + T2W = T2U + T2V; + T2X = FMA(KP707106781, T2W, T2T); + T3t = FNMS(KP707106781, T2W, T2T); + T3q = FNMS(KP707106781, T2N, T2G); + T3p = W[18]; + T3r = T3p * T3q; + T3s = W[19]; + T3B = T3s * T3q; + T2O = FMA(KP707106781, T2N, T2G); + T2D = W[2]; + T2P = T2D * T2O; + T2Q = W[3]; + T3l = T2Q * T2O; + T3a = FMA(KP923879532, T39, T32); + T3j = FNMS(KP923879532, T3i, T3f); + T2Z = W[4]; + T3b = T2Z * T3a; + T3n = T2Z * T3j; + T3w = FNMS(KP923879532, T39, T32); + T3z = FMA(KP923879532, T3i, T3f); + T3v = W[20]; + T3x = T3v * T3w; + T3D = T3v * T3z; + } + { + E T2Y, T3m, T3k, T3o, T3c; + T2Y = FNMS(T2Q, T2X, T2P); + T3m = FMA(T2D, T2X, T3l); + T3c = W[5]; + T3k = FMA(T3c, T3j, T3b); + T3o = FNMS(T3c, T3a, T3n); + Rp[WS(rs, 1)] = T2Y - T3k; + Ip[WS(rs, 1)] = T3m + T3o; + Rm[WS(rs, 1)] = T2Y + T3k; + Im[WS(rs, 1)] = T3o - T3m; + } + { + E T3u, T3C, T3A, T3E, T3y; + T3u = FNMS(T3s, T3t, T3r); + T3C = FMA(T3p, T3t, T3B); + T3y = W[21]; + T3A = FMA(T3y, T3z, T3x); + T3E = FNMS(T3y, T3w, T3D); + Rp[WS(rs, 5)] = T3u - T3A; + Ip[WS(rs, 5)] = T3C + T3E; + Rm[WS(rs, 5)] = T3u + T3A; + Im[WS(rs, 5)] = T3E - T3C; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 16}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, {136, 30, 70, 0} }; + +void X(codelet_hc2cbdft_16) (planner *p) { + X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT); +} +#else + +/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include rdft/scalar/hc2cb.h */ + +/* + * This function contains 206 FP additions, 84 FP multiplications, + * (or, 168 additions, 46 multiplications, 38 fused multiply/add), + * 60 stack variables, 3 constants, and 64 memory accesses + */ +#include "rdft/scalar/hc2cb.h" + +static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { + E TB, T2L, T30, T1n, Tf, T1U, T2H, T3p, T1E, T1Z, TM, T31, T2s, T3k, T1i; + E T2M, Tu, T1Y, T2Q, T2X, T2T, T2Y, TY, T1d, T19, T1e, T2v, T2C, T2y, T2D; + E T1x, T1V; + { + E T3, T1j, TA, T1B, T6, Tx, T1m, T1C, Ta, TC, TF, T1y, Td, TH, TK; + E T1z; + { + E T1, T2, Ty, Tz; + T1 = Rp[0]; + T2 = Rm[WS(rs, 7)]; + T3 = T1 + T2; + T1j = T1 - T2; + Ty = Ip[0]; + Tz = Im[WS(rs, 7)]; + TA = Ty + Tz; + T1B = Ty - Tz; + } + { + E T4, T5, T1k, T1l; + T4 = Rp[WS(rs, 4)]; + T5 = Rm[WS(rs, 3)]; + T6 = T4 + T5; + Tx = T4 - T5; + T1k = Ip[WS(rs, 4)]; + T1l = Im[WS(rs, 3)]; + T1m = T1k + T1l; + T1C = T1k - T1l; + } + { + E T8, T9, TD, TE; + T8 = Rp[WS(rs, 2)]; + T9 = Rm[WS(rs, 5)]; + Ta = T8 + T9; + TC = T8 - T9; + TD = Ip[WS(rs, 2)]; + TE = Im[WS(rs, 5)]; + TF = TD + TE; + T1y = TD - TE; + } + { + E Tb, Tc, TI, TJ; + Tb = Rm[WS(rs, 1)]; + Tc = Rp[WS(rs, 6)]; + Td = Tb + Tc; + TH = Tb - Tc; + TI = Im[WS(rs, 1)]; + TJ = Ip[WS(rs, 6)]; + TK = TI + TJ; + T1z = TJ - TI; + } + { + E T7, Te, TG, TL; + TB = Tx + TA; + T2L = TA - Tx; + T30 = T1j + T1m; + T1n = T1j - T1m; + T7 = T3 + T6; + Te = Ta + Td; + Tf = T7 + Te; + T1U = T7 - Te; + { + E T2F, T2G, T1A, T1D; + T2F = Ta - Td; + T2G = T1B - T1C; + T2H = T2F + T2G; + T3p = T2G - T2F; + T1A = T1y + T1z; + T1D = T1B + T1C; + T1E = T1A + T1D; + T1Z = T1D - T1A; + } + TG = TC + TF; + TL = TH + TK; + TM = KP707106781 * (TG - TL); + T31 = KP707106781 * (TG + TL); + { + E T2q, T2r, T1g, T1h; + T2q = T3 - T6; + T2r = T1z - T1y; + T2s = T2q + T2r; + T3k = T2q - T2r; + T1g = TC - TF; + T1h = TH - TK; + T1i = KP707106781 * (T1g + T1h); + T2M = KP707106781 * (T1g - T1h); + } + } + } + { + E Ti, TT, TR, T1r, Tl, TO, TW, T1s, Tp, T14, T12, T1u, Ts, TZ, T17; + E T1v; + { + E Tg, Th, TP, TQ; + Tg = Rp[WS(rs, 1)]; + Th = Rm[WS(rs, 6)]; + Ti = Tg + Th; + TT = Tg - Th; + TP = Ip[WS(rs, 1)]; + TQ = Im[WS(rs, 6)]; + TR = TP + TQ; + T1r = TP - TQ; + } + { + E Tj, Tk, TU, TV; + Tj = Rp[WS(rs, 5)]; + Tk = Rm[WS(rs, 2)]; + Tl = Tj + Tk; + TO = Tj - Tk; + TU = Ip[WS(rs, 5)]; + TV = Im[WS(rs, 2)]; + TW = TU + TV; + T1s = TU - TV; + } + { + E Tn, To, T10, T11; + Tn = Rm[0]; + To = Rp[WS(rs, 7)]; + Tp = Tn + To; + T14 = Tn - To; + T10 = Im[0]; + T11 = Ip[WS(rs, 7)]; + T12 = T10 + T11; + T1u = T11 - T10; + } + { + E Tq, Tr, T15, T16; + Tq = Rp[WS(rs, 3)]; + Tr = Rm[WS(rs, 4)]; + Ts = Tq + Tr; + TZ = Tq - Tr; + T15 = Ip[WS(rs, 3)]; + T16 = Im[WS(rs, 4)]; + T17 = T15 + T16; + T1v = T15 - T16; + } + { + E Tm, Tt, T2O, T2P; + Tm = Ti + Tl; + Tt = Tp + Ts; + Tu = Tm + Tt; + T1Y = Tm - Tt; + T2O = TR - TO; + T2P = TT + TW; + T2Q = FMA(KP382683432, T2O, KP923879532 * T2P); + T2X = FNMS(KP923879532, T2O, KP382683432 * T2P); + } + { + E T2R, T2S, TS, TX; + T2R = TZ + T12; + T2S = T14 + T17; + T2T = FMA(KP382683432, T2R, KP923879532 * T2S); + T2Y = FNMS(KP923879532, T2R, KP382683432 * T2S); + TS = TO + TR; + TX = TT - TW; + TY = FMA(KP923879532, TS, KP382683432 * TX); + T1d = FNMS(KP382683432, TS, KP923879532 * TX); + } + { + E T13, T18, T2t, T2u; + T13 = TZ - T12; + T18 = T14 - T17; + T19 = FNMS(KP382683432, T18, KP923879532 * T13); + T1e = FMA(KP382683432, T13, KP923879532 * T18); + T2t = Ti - Tl; + T2u = T1r - T1s; + T2v = T2t - T2u; + T2C = T2t + T2u; + } + { + E T2w, T2x, T1t, T1w; + T2w = Tp - Ts; + T2x = T1u - T1v; + T2y = T2w + T2x; + T2D = T2x - T2w; + T1t = T1r + T1s; + T1w = T1u + T1v; + T1x = T1t + T1w; + T1V = T1w - T1t; + } + } + { + E Tv, T1F, T1b, T1N, T1p, T1P, T1L, T1R; + Tv = Tf + Tu; + T1F = T1x + T1E; + { + E TN, T1a, T1f, T1o; + TN = TB + TM; + T1a = TY + T19; + T1b = TN + T1a; + T1N = TN - T1a; + T1f = T1d + T1e; + T1o = T1i + T1n; + T1p = T1f + T1o; + T1P = T1o - T1f; + { + E T1I, T1K, T1H, T1J; + T1I = Tf - Tu; + T1K = T1E - T1x; + T1H = W[14]; + T1J = W[15]; + T1L = FNMS(T1J, T1K, T1H * T1I); + T1R = FMA(T1J, T1I, T1H * T1K); + } + } + { + E T1q, T1G, Tw, T1c; + Tw = W[0]; + T1c = W[1]; + T1q = FMA(Tw, T1b, T1c * T1p); + T1G = FNMS(T1c, T1b, Tw * T1p); + Rp[0] = Tv - T1q; + Ip[0] = T1F + T1G; + Rm[0] = Tv + T1q; + Im[0] = T1G - T1F; + } + { + E T1Q, T1S, T1M, T1O; + T1M = W[16]; + T1O = W[17]; + T1Q = FMA(T1M, T1N, T1O * T1P); + T1S = FNMS(T1O, T1N, T1M * T1P); + Rp[WS(rs, 4)] = T1L - T1Q; + Ip[WS(rs, 4)] = T1R + T1S; + Rm[WS(rs, 4)] = T1L + T1Q; + Im[WS(rs, 4)] = T1S - T1R; + } + } + { + E T25, T2j, T29, T2l, T21, T2b, T2h, T2n; + { + E T23, T24, T27, T28; + T23 = TB - TM; + T24 = T1d - T1e; + T25 = T23 + T24; + T2j = T23 - T24; + T27 = T19 - TY; + T28 = T1n - T1i; + T29 = T27 + T28; + T2l = T28 - T27; + } + { + E T1W, T20, T1T, T1X; + T1W = T1U + T1V; + T20 = T1Y + T1Z; + T1T = W[6]; + T1X = W[7]; + T21 = FNMS(T1X, T20, T1T * T1W); + T2b = FMA(T1X, T1W, T1T * T20); + } + { + E T2e, T2g, T2d, T2f; + T2e = T1U - T1V; + T2g = T1Z - T1Y; + T2d = W[22]; + T2f = W[23]; + T2h = FNMS(T2f, T2g, T2d * T2e); + T2n = FMA(T2f, T2e, T2d * T2g); + } + { + E T2a, T2c, T22, T26; + T22 = W[8]; + T26 = W[9]; + T2a = FMA(T22, T25, T26 * T29); + T2c = FNMS(T26, T25, T22 * T29); + Rp[WS(rs, 2)] = T21 - T2a; + Ip[WS(rs, 2)] = T2b + T2c; + Rm[WS(rs, 2)] = T21 + T2a; + Im[WS(rs, 2)] = T2c - T2b; + } + { + E T2m, T2o, T2i, T2k; + T2i = W[24]; + T2k = W[25]; + T2m = FMA(T2i, T2j, T2k * T2l); + T2o = FNMS(T2k, T2j, T2i * T2l); + Rp[WS(rs, 6)] = T2h - T2m; + Ip[WS(rs, 6)] = T2n + T2o; + Rm[WS(rs, 6)] = T2h + T2m; + Im[WS(rs, 6)] = T2o - T2n; + } + } + { + E T2A, T38, T2I, T3a, T2V, T3d, T33, T3f, T2z, T2E; + T2z = KP707106781 * (T2v + T2y); + T2A = T2s + T2z; + T38 = T2s - T2z; + T2E = KP707106781 * (T2C + T2D); + T2I = T2E + T2H; + T3a = T2H - T2E; + { + E T2N, T2U, T2Z, T32; + T2N = T2L + T2M; + T2U = T2Q - T2T; + T2V = T2N + T2U; + T3d = T2N - T2U; + T2Z = T2X + T2Y; + T32 = T30 - T31; + T33 = T2Z + T32; + T3f = T32 - T2Z; + } + { + E T2J, T35, T34, T36; + { + E T2p, T2B, T2K, T2W; + T2p = W[2]; + T2B = W[3]; + T2J = FNMS(T2B, T2I, T2p * T2A); + T35 = FMA(T2B, T2A, T2p * T2I); + T2K = W[4]; + T2W = W[5]; + T34 = FMA(T2K, T2V, T2W * T33); + T36 = FNMS(T2W, T2V, T2K * T33); + } + Rp[WS(rs, 1)] = T2J - T34; + Ip[WS(rs, 1)] = T35 + T36; + Rm[WS(rs, 1)] = T2J + T34; + Im[WS(rs, 1)] = T36 - T35; + } + { + E T3b, T3h, T3g, T3i; + { + E T37, T39, T3c, T3e; + T37 = W[18]; + T39 = W[19]; + T3b = FNMS(T39, T3a, T37 * T38); + T3h = FMA(T39, T38, T37 * T3a); + T3c = W[20]; + T3e = W[21]; + T3g = FMA(T3c, T3d, T3e * T3f); + T3i = FNMS(T3e, T3d, T3c * T3f); + } + Rp[WS(rs, 5)] = T3b - T3g; + Ip[WS(rs, 5)] = T3h + T3i; + Rm[WS(rs, 5)] = T3b + T3g; + Im[WS(rs, 5)] = T3i - T3h; + } + } + { + E T3m, T3E, T3q, T3G, T3v, T3J, T3z, T3L, T3l, T3o; + T3l = KP707106781 * (T2D - T2C); + T3m = T3k + T3l; + T3E = T3k - T3l; + T3o = KP707106781 * (T2v - T2y); + T3q = T3o + T3p; + T3G = T3p - T3o; + { + E T3t, T3u, T3x, T3y; + T3t = T2L - T2M; + T3u = T2X - T2Y; + T3v = T3t + T3u; + T3J = T3t - T3u; + T3x = T31 + T30; + T3y = T2Q + T2T; + T3z = T3x - T3y; + T3L = T3y + T3x; + } + { + E T3r, T3B, T3A, T3C; + { + E T3j, T3n, T3s, T3w; + T3j = W[10]; + T3n = W[11]; + T3r = FNMS(T3n, T3q, T3j * T3m); + T3B = FMA(T3n, T3m, T3j * T3q); + T3s = W[12]; + T3w = W[13]; + T3A = FMA(T3s, T3v, T3w * T3z); + T3C = FNMS(T3w, T3v, T3s * T3z); + } + Rp[WS(rs, 3)] = T3r - T3A; + Ip[WS(rs, 3)] = T3B + T3C; + Rm[WS(rs, 3)] = T3r + T3A; + Im[WS(rs, 3)] = T3C - T3B; + } + { + E T3H, T3N, T3M, T3O; + { + E T3D, T3F, T3I, T3K; + T3D = W[26]; + T3F = W[27]; + T3H = FNMS(T3F, T3G, T3D * T3E); + T3N = FMA(T3F, T3E, T3D * T3G); + T3I = W[28]; + T3K = W[29]; + T3M = FMA(T3I, T3J, T3K * T3L); + T3O = FNMS(T3K, T3J, T3I * T3L); + } + Rp[WS(rs, 7)] = T3H - T3M; + Ip[WS(rs, 7)] = T3N + T3O; + Rm[WS(rs, 7)] = T3H + T3M; + Im[WS(rs, 7)] = T3O - T3N; + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 16}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, {168, 46, 38, 0} }; + +void X(codelet_hc2cbdft_16) (planner *p) { + X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT); +} +#endif