Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cb/hc2cb_6.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cb/hc2cb_6.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,292 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:07:51 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include rdft/scalar/hc2cb.h */ + +/* + * This function contains 46 FP additions, 32 FP multiplications, + * (or, 24 additions, 10 multiplications, 22 fused multiply/add), + * 31 stack variables, 2 constants, and 24 memory accesses + */ +#include "rdft/scalar/hc2cb.h" + +static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { + E Td, Tn, TO, TJ, TN, Tk, Tr, T3, TC, Ts, TQ, Ta, Tm, TF, TG; + { + E Tb, Tc, Tj, TI, Tg, TH; + Tb = Ip[0]; + Tc = Im[WS(rs, 2)]; + Td = Tb - Tc; + { + E Th, Ti, Te, Tf; + Th = Ip[WS(rs, 1)]; + Ti = Im[WS(rs, 1)]; + Tj = Th - Ti; + TI = Th + Ti; + Te = Ip[WS(rs, 2)]; + Tf = Im[0]; + Tg = Te - Tf; + TH = Te + Tf; + } + Tn = Tj - Tg; + TO = TH - TI; + TJ = TH + TI; + TN = Tb + Tc; + Tk = Tg + Tj; + Tr = FNMS(KP500000000, Tk, Td); + } + { + E T9, TE, T6, TD, T1, T2; + T1 = Rp[0]; + T2 = Rm[WS(rs, 2)]; + T3 = T1 + T2; + TC = T1 - T2; + { + E T7, T8, T4, T5; + T7 = Rm[WS(rs, 1)]; + T8 = Rp[WS(rs, 1)]; + T9 = T7 + T8; + TE = T7 - T8; + T4 = Rp[WS(rs, 2)]; + T5 = Rm[0]; + T6 = T4 + T5; + TD = T4 - T5; + } + Ts = T6 - T9; + TQ = TD - TE; + Ta = T6 + T9; + Tm = FNMS(KP500000000, Ta, T3); + TF = TD + TE; + TG = FNMS(KP500000000, TF, TC); + } + Rp[0] = T3 + Ta; + Rm[0] = Td + Tk; + { + E To, Tt, Tp, Tu, Tl, Tq; + To = FNMS(KP866025403, Tn, Tm); + Tt = FNMS(KP866025403, Ts, Tr); + Tl = W[2]; + Tp = Tl * To; + Tu = Tl * Tt; + Tq = W[3]; + Rp[WS(rs, 1)] = FNMS(Tq, Tt, Tp); + Rm[WS(rs, 1)] = FMA(Tq, To, Tu); + } + { + E T13, TZ, T11, T12, T14, T10; + T13 = TN + TO; + T10 = TC + TF; + TZ = W[4]; + T11 = TZ * T10; + T12 = W[5]; + T14 = T12 * T10; + Ip[WS(rs, 1)] = FNMS(T12, T13, T11); + Im[WS(rs, 1)] = FMA(TZ, T13, T14); + } + { + E Tw, Tz, Tx, TA, Tv, Ty; + Tw = FMA(KP866025403, Tn, Tm); + Tz = FMA(KP866025403, Ts, Tr); + Tv = W[6]; + Tx = Tv * Tw; + TA = Tv * Tz; + Ty = W[7]; + Rp[WS(rs, 2)] = FNMS(Ty, Tz, Tx); + Rm[WS(rs, 2)] = FMA(Ty, Tw, TA); + } + { + E TR, TX, TT, TV, TW, TY, TB, TL, TM, TS, TP, TU, TK; + TP = FNMS(KP500000000, TO, TN); + TR = FMA(KP866025403, TQ, TP); + TX = FNMS(KP866025403, TQ, TP); + TU = FMA(KP866025403, TJ, TG); + TT = W[8]; + TV = TT * TU; + TW = W[9]; + TY = TW * TU; + TK = FNMS(KP866025403, TJ, TG); + TB = W[0]; + TL = TB * TK; + TM = W[1]; + TS = TM * TK; + Ip[0] = FNMS(TM, TR, TL); + Im[0] = FMA(TB, TR, TS); + Ip[WS(rs, 2)] = FNMS(TW, TX, TV); + Im[WS(rs, 2)] = FMA(TT, TX, TY); + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 6}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, {24, 10, 22, 0} }; + +void X(codelet_hc2cb_6) (planner *p) { + X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT); +} +#else + +/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 6 -dif -name hc2cb_6 -include rdft/scalar/hc2cb.h */ + +/* + * This function contains 46 FP additions, 28 FP multiplications, + * (or, 32 additions, 14 multiplications, 14 fused multiply/add), + * 25 stack variables, 2 constants, and 24 memory accesses + */ +#include "rdft/scalar/hc2cb.h" + +static void hc2cb_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { + E T3, Ty, Td, TE, Ta, TO, Tr, TB, Tk, TL, Tn, TH; + { + E T1, T2, Tb, Tc; + T1 = Rp[0]; + T2 = Rm[WS(rs, 2)]; + T3 = T1 + T2; + Ty = T1 - T2; + Tb = Ip[0]; + Tc = Im[WS(rs, 2)]; + Td = Tb - Tc; + TE = Tb + Tc; + } + { + E T6, Tz, T9, TA; + { + E T4, T5, T7, T8; + T4 = Rp[WS(rs, 2)]; + T5 = Rm[0]; + T6 = T4 + T5; + Tz = T4 - T5; + T7 = Rm[WS(rs, 1)]; + T8 = Rp[WS(rs, 1)]; + T9 = T7 + T8; + TA = T7 - T8; + } + Ta = T6 + T9; + TO = KP866025403 * (Tz - TA); + Tr = KP866025403 * (T6 - T9); + TB = Tz + TA; + } + { + E Tg, TG, Tj, TF; + { + E Te, Tf, Th, Ti; + Te = Ip[WS(rs, 2)]; + Tf = Im[0]; + Tg = Te - Tf; + TG = Te + Tf; + Th = Ip[WS(rs, 1)]; + Ti = Im[WS(rs, 1)]; + Tj = Th - Ti; + TF = Th + Ti; + } + Tk = Tg + Tj; + TL = KP866025403 * (TG + TF); + Tn = KP866025403 * (Tj - Tg); + TH = TF - TG; + } + Rp[0] = T3 + Ta; + Rm[0] = Td + Tk; + { + E TC, TI, Tx, TD; + TC = Ty + TB; + TI = TE - TH; + Tx = W[4]; + TD = W[5]; + Ip[WS(rs, 1)] = FNMS(TD, TI, Tx * TC); + Im[WS(rs, 1)] = FMA(TD, TC, Tx * TI); + } + { + E To, Tu, Ts, Tw, Tm, Tq; + Tm = FNMS(KP500000000, Ta, T3); + To = Tm - Tn; + Tu = Tm + Tn; + Tq = FNMS(KP500000000, Tk, Td); + Ts = Tq - Tr; + Tw = Tr + Tq; + { + E Tl, Tp, Tt, Tv; + Tl = W[2]; + Tp = W[3]; + Rp[WS(rs, 1)] = FNMS(Tp, Ts, Tl * To); + Rm[WS(rs, 1)] = FMA(Tl, Ts, Tp * To); + Tt = W[6]; + Tv = W[7]; + Rp[WS(rs, 2)] = FNMS(Tv, Tw, Tt * Tu); + Rm[WS(rs, 2)] = FMA(Tt, Tw, Tv * Tu); + } + } + { + E TM, TS, TQ, TU, TK, TP; + TK = FNMS(KP500000000, TB, Ty); + TM = TK - TL; + TS = TK + TL; + TP = FMA(KP500000000, TH, TE); + TQ = TO + TP; + TU = TP - TO; + { + E TJ, TN, TR, TT; + TJ = W[0]; + TN = W[1]; + Ip[0] = FNMS(TN, TQ, TJ * TM); + Im[0] = FMA(TN, TM, TJ * TQ); + TR = W[8]; + TT = W[9]; + Ip[WS(rs, 2)] = FNMS(TT, TU, TR * TS); + Im[WS(rs, 2)] = FMA(TT, TS, TR * TU); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 6}, + {TW_NEXT, 1, 0} +}; + +static const hc2c_desc desc = { 6, "hc2cb_6", twinstr, &GENUS, {32, 14, 14, 0} }; + +void X(codelet_hc2cb_6) (planner *p) { + X(khc2c_register) (p, hc2cb_6, &desc, HC2C_VIA_RDFT); +} +#endif