Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cb/hb_7.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cb/hb_7.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,356 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:07:31 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include rdft/scalar/hb.h */ + +/* + * This function contains 72 FP additions, 66 FP multiplications, + * (or, 18 additions, 12 multiplications, 54 fused multiply/add), + * 41 stack variables, 6 constants, and 28 memory accesses + */ +#include "rdft/scalar/hb.h" + +static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP974927912, +0.974927912181823607018131682993931217232785801); + DK(KP900968867, +0.900968867902419126236102319507445051165919162); + DK(KP801937735, +0.801937735804838252472204639014890102331838324); + DK(KP692021471, +0.692021471630095869627814897002069140197260599); + DK(KP356895867, +0.356895867892209443894399510021300583399127187); + DK(KP554958132, +0.554958132087371191422194871006410481067288862); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { + E T1, T4, TC, T7, TB, Ta, TA, TD, TZ, T1l, T1b, TP, Td, Tt, Tw; + E Tv, Tu, Tp, Ty, T1j, T1e, TX, TS; + T1 = cr[0]; + { + E T2, T3, T1a, TO, Tc; + T2 = cr[WS(rs, 1)]; + T3 = ci[0]; + T4 = T2 + T3; + TC = T2 - T3; + { + E T5, T6, T8, T9; + T5 = cr[WS(rs, 2)]; + T6 = ci[WS(rs, 1)]; + T7 = T5 + T6; + TB = T5 - T6; + T8 = cr[WS(rs, 3)]; + T9 = ci[WS(rs, 2)]; + Ta = T8 + T9; + TA = T8 - T9; + } + TD = FNMS(KP554958132, TC, TB); + TZ = FMA(KP554958132, TB, TA); + T1l = FMA(KP554958132, TA, TC); + T1a = FNMS(KP356895867, T7, T4); + T1b = FNMS(KP692021471, T1a, Ta); + TO = FNMS(KP356895867, T4, Ta); + TP = FNMS(KP692021471, TO, T7); + Tc = FNMS(KP356895867, Ta, T7); + Td = FNMS(KP692021471, Tc, T4); + } + Tt = ci[WS(rs, 6)]; + { + E Th, Tk, Tn, Tf, Tg; + Tf = ci[WS(rs, 3)]; + Tg = cr[WS(rs, 4)]; + Th = Tf + Tg; + Tw = Tf - Tg; + { + E Ti, Tj, Tl, Tm; + Ti = ci[WS(rs, 4)]; + Tj = cr[WS(rs, 5)]; + Tk = Ti + Tj; + Tv = Ti - Tj; + Tl = ci[WS(rs, 5)]; + Tm = cr[WS(rs, 6)]; + Tn = Tl + Tm; + Tu = Tl - Tm; + } + { + E To, Tx, T1i, T1d, TW, TR; + To = FNMS(KP554958132, Tn, Tk); + Tp = FNMS(KP801937735, To, Th); + Tx = FNMS(KP356895867, Tw, Tv); + Ty = FNMS(KP692021471, Tx, Tu); + T1i = FNMS(KP356895867, Tv, Tu); + T1j = FNMS(KP692021471, T1i, Tw); + T1d = FMA(KP554958132, Th, Tn); + T1e = FMA(KP801937735, T1d, Tk); + TW = FNMS(KP356895867, Tu, Tw); + TX = FNMS(KP692021471, TW, Tv); + TR = FMA(KP554958132, Tk, Th); + TS = FNMS(KP801937735, TR, Tn); + } + } + cr[0] = T1 + T4 + T7 + Ta; + ci[0] = Tt + Tu + Tv + Tw; + { + E Tq, TI, TF, TL, Te, Tz, TE; + Te = FNMS(KP900968867, Td, T1); + Tq = FNMS(KP974927912, Tp, Te); + TI = FMA(KP974927912, Tp, Te); + Tz = FNMS(KP900968867, Ty, Tt); + TE = FNMS(KP801937735, TD, TA); + TF = FMA(KP974927912, TE, Tz); + TL = FNMS(KP974927912, TE, Tz); + { + E Tb, Tr, Ts, TG; + Tb = W[4]; + Tr = Tb * Tq; + Ts = W[5]; + TG = Ts * Tq; + cr[WS(rs, 3)] = FNMS(Ts, TF, Tr); + ci[WS(rs, 3)] = FMA(Tb, TF, TG); + } + { + E TH, TJ, TK, TM; + TH = W[6]; + TJ = TH * TI; + TK = W[7]; + TM = TK * TI; + cr[WS(rs, 4)] = FNMS(TK, TL, TJ); + ci[WS(rs, 4)] = FMA(TH, TL, TM); + } + } + { + E TT, T14, T11, T17, TQ, TY, T10; + TQ = FNMS(KP900968867, TP, T1); + TT = FNMS(KP974927912, TS, TQ); + T14 = FMA(KP974927912, TS, TQ); + TY = FNMS(KP900968867, TX, Tt); + T10 = FNMS(KP801937735, TZ, TC); + T11 = FMA(KP974927912, T10, TY); + T17 = FNMS(KP974927912, T10, TY); + { + E TN, TU, TV, T12; + TN = W[2]; + TU = TN * TT; + TV = W[3]; + T12 = TV * TT; + cr[WS(rs, 2)] = FNMS(TV, T11, TU); + ci[WS(rs, 2)] = FMA(TN, T11, T12); + } + { + E T13, T15, T16, T18; + T13 = W[8]; + T15 = T13 * T14; + T16 = W[9]; + T18 = T16 * T14; + cr[WS(rs, 5)] = FNMS(T16, T17, T15); + ci[WS(rs, 5)] = FMA(T13, T17, T18); + } + } + { + E T1f, T1q, T1n, T1t, T1c, T1k, T1m; + T1c = FNMS(KP900968867, T1b, T1); + T1f = FNMS(KP974927912, T1e, T1c); + T1q = FMA(KP974927912, T1e, T1c); + T1k = FNMS(KP900968867, T1j, Tt); + T1m = FMA(KP801937735, T1l, TB); + T1n = FMA(KP974927912, T1m, T1k); + T1t = FNMS(KP974927912, T1m, T1k); + { + E T19, T1g, T1h, T1o; + T19 = W[0]; + T1g = T19 * T1f; + T1h = W[1]; + T1o = T1h * T1f; + cr[WS(rs, 1)] = FNMS(T1h, T1n, T1g); + ci[WS(rs, 1)] = FMA(T19, T1n, T1o); + } + { + E T1p, T1r, T1s, T1u; + T1p = W[10]; + T1r = T1p * T1q; + T1s = W[11]; + T1u = T1s * T1q; + cr[WS(rs, 6)] = FNMS(T1s, T1t, T1r); + ci[WS(rs, 6)] = FMA(T1p, T1t, T1u); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 7}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, {18, 12, 54, 0} }; + +void X(codelet_hb_7) (planner *p) { + X(khc2hc_register) (p, hb_7, &desc); +} +#else + +/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include rdft/scalar/hb.h */ + +/* + * This function contains 72 FP additions, 60 FP multiplications, + * (or, 36 additions, 24 multiplications, 36 fused multiply/add), + * 36 stack variables, 6 constants, and 28 memory accesses + */ +#include "rdft/scalar/hb.h" + +static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP222520933, +0.222520933956314404288902564496794759466355569); + DK(KP900968867, +0.900968867902419126236102319507445051165919162); + DK(KP623489801, +0.623489801858733530525004884004239810632274731); + DK(KP781831482, +0.781831482468029808708444526674057750232334519); + DK(KP974927912, +0.974927912181823607018131682993931217232785801); + DK(KP433883739, +0.433883739117558120475768332848358754609990728); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { + E T1, T4, T7, Ta, Tx, TI, TV, TQ, TE, Tm, Tb, Te, Th, Tk, Tq; + E TF, TR, TU, TJ, Tt; + { + E Tu, Tw, Tv, T2, T3; + T1 = cr[0]; + T2 = cr[WS(rs, 1)]; + T3 = ci[0]; + T4 = T2 + T3; + Tu = T2 - T3; + { + E T5, T6, T8, T9; + T5 = cr[WS(rs, 2)]; + T6 = ci[WS(rs, 1)]; + T7 = T5 + T6; + Tw = T5 - T6; + T8 = cr[WS(rs, 3)]; + T9 = ci[WS(rs, 2)]; + Ta = T8 + T9; + Tv = T8 - T9; + } + Tx = FMA(KP433883739, Tu, KP974927912 * Tv) - (KP781831482 * Tw); + TI = FMA(KP781831482, Tu, KP974927912 * Tw) + (KP433883739 * Tv); + TV = FNMS(KP781831482, Tv, KP974927912 * Tu) - (KP433883739 * Tw); + TQ = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4); + TE = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7); + Tm = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4); + } + { + E Tp, Tn, To, Tc, Td; + Tb = ci[WS(rs, 6)]; + Tc = ci[WS(rs, 5)]; + Td = cr[WS(rs, 6)]; + Te = Tc - Td; + Tp = Tc + Td; + { + E Tf, Tg, Ti, Tj; + Tf = ci[WS(rs, 4)]; + Tg = cr[WS(rs, 5)]; + Th = Tf - Tg; + Tn = Tf + Tg; + Ti = ci[WS(rs, 3)]; + Tj = cr[WS(rs, 4)]; + Tk = Ti - Tj; + To = Ti + Tj; + } + Tq = FNMS(KP974927912, To, KP781831482 * Tn) - (KP433883739 * Tp); + TF = FMA(KP781831482, Tp, KP974927912 * Tn) + (KP433883739 * To); + TR = FMA(KP433883739, Tn, KP781831482 * To) - (KP974927912 * Tp); + TU = FMA(KP623489801, Tk, Tb) + FNMA(KP900968867, Th, KP222520933 * Te); + TJ = FMA(KP623489801, Te, Tb) + FNMA(KP900968867, Tk, KP222520933 * Th); + Tt = FMA(KP623489801, Th, Tb) + FNMA(KP222520933, Tk, KP900968867 * Te); + } + cr[0] = T1 + T4 + T7 + Ta; + ci[0] = Tb + Te + Th + Tk; + { + E Tr, Ty, Tl, Ts; + Tr = Tm - Tq; + Ty = Tt - Tx; + Tl = W[6]; + Ts = W[7]; + cr[WS(rs, 4)] = FNMS(Ts, Ty, Tl * Tr); + ci[WS(rs, 4)] = FMA(Tl, Ty, Ts * Tr); + } + { + E TY, T10, TX, TZ; + TY = TQ + TR; + T10 = TV + TU; + TX = W[2]; + TZ = W[3]; + cr[WS(rs, 2)] = FNMS(TZ, T10, TX * TY); + ci[WS(rs, 2)] = FMA(TX, T10, TZ * TY); + } + { + E TA, TC, Tz, TB; + TA = Tm + Tq; + TC = Tx + Tt; + Tz = W[4]; + TB = W[5]; + cr[WS(rs, 3)] = FNMS(TB, TC, Tz * TA); + ci[WS(rs, 3)] = FMA(Tz, TC, TB * TA); + } + { + E TM, TO, TL, TN; + TM = TE + TF; + TO = TJ - TI; + TL = W[10]; + TN = W[11]; + cr[WS(rs, 6)] = FNMS(TN, TO, TL * TM); + ci[WS(rs, 6)] = FMA(TL, TO, TN * TM); + } + { + E TS, TW, TP, TT; + TS = TQ - TR; + TW = TU - TV; + TP = W[8]; + TT = W[9]; + cr[WS(rs, 5)] = FNMS(TT, TW, TP * TS); + ci[WS(rs, 5)] = FMA(TP, TW, TT * TS); + } + { + E TG, TK, TD, TH; + TG = TE - TF; + TK = TI + TJ; + TD = W[0]; + TH = W[1]; + cr[WS(rs, 1)] = FNMS(TH, TK, TD * TG); + ci[WS(rs, 1)] = FMA(TD, TK, TH * TG); + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 7}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, {36, 24, 36, 0} }; + +void X(codelet_hb_7) (planner *p) { + X(khc2hc_register) (p, hb_7, &desc); +} +#endif