diff src/fftw-3.3.8/rdft/scalar/r2cb/hb_5.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.8/rdft/scalar/r2cb/hb_5.c	Tue Nov 19 14:52:55 2019 +0000
@@ -0,0 +1,274 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+/* This file was automatically generated --- DO NOT EDIT */
+/* Generated on Thu May 24 08:07:31 EDT 2018 */
+
+#include "rdft/codelet-rdft.h"
+
+#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
+
+/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include rdft/scalar/hb.h */
+
+/*
+ * This function contains 40 FP additions, 34 FP multiplications,
+ * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
+ * 27 stack variables, 4 constants, and 20 memory accesses
+ */
+#include "rdft/scalar/hb.h"
+
+static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
+     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
+     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
+     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
+	       E T1, Tb, TM, Tw, T8, Ta, Tn, Tj, TH, Ts, Tq, Tr;
+	       {
+		    E T4, Tu, T7, Tv;
+		    T1 = cr[0];
+		    {
+			 E T2, T3, T5, T6;
+			 T2 = cr[WS(rs, 1)];
+			 T3 = ci[0];
+			 T4 = T2 + T3;
+			 Tu = T2 - T3;
+			 T5 = cr[WS(rs, 2)];
+			 T6 = ci[WS(rs, 1)];
+			 T7 = T5 + T6;
+			 Tv = T5 - T6;
+		    }
+		    Tb = T4 - T7;
+		    TM = FNMS(KP618033988, Tu, Tv);
+		    Tw = FMA(KP618033988, Tv, Tu);
+		    T8 = T4 + T7;
+		    Ta = FNMS(KP250000000, T8, T1);
+	       }
+	       {
+		    E Tf, To, Ti, Tp;
+		    Tn = ci[WS(rs, 4)];
+		    {
+			 E Td, Te, Tg, Th;
+			 Td = ci[WS(rs, 3)];
+			 Te = cr[WS(rs, 4)];
+			 Tf = Td + Te;
+			 To = Td - Te;
+			 Tg = ci[WS(rs, 2)];
+			 Th = cr[WS(rs, 3)];
+			 Ti = Tg + Th;
+			 Tp = Tg - Th;
+		    }
+		    Tj = FMA(KP618033988, Ti, Tf);
+		    TH = FNMS(KP618033988, Tf, Ti);
+		    Ts = To - Tp;
+		    Tq = To + Tp;
+		    Tr = FNMS(KP250000000, Tq, Tn);
+	       }
+	       cr[0] = T1 + T8;
+	       ci[0] = Tn + Tq;
+	       {
+		    E Tk, TA, Tx, TD, Tc, Tt;
+		    Tc = FMA(KP559016994, Tb, Ta);
+		    Tk = FNMS(KP951056516, Tj, Tc);
+		    TA = FMA(KP951056516, Tj, Tc);
+		    Tt = FMA(KP559016994, Ts, Tr);
+		    Tx = FMA(KP951056516, Tw, Tt);
+		    TD = FNMS(KP951056516, Tw, Tt);
+		    {
+			 E T9, Tl, Tm, Ty;
+			 T9 = W[0];
+			 Tl = T9 * Tk;
+			 Tm = W[1];
+			 Ty = Tm * Tk;
+			 cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl);
+			 ci[WS(rs, 1)] = FMA(T9, Tx, Ty);
+		    }
+		    {
+			 E Tz, TB, TC, TE;
+			 Tz = W[6];
+			 TB = Tz * TA;
+			 TC = W[7];
+			 TE = TC * TA;
+			 cr[WS(rs, 4)] = FNMS(TC, TD, TB);
+			 ci[WS(rs, 4)] = FMA(Tz, TD, TE);
+		    }
+	       }
+	       {
+		    E TI, TQ, TN, TT, TG, TL;
+		    TG = FNMS(KP559016994, Tb, Ta);
+		    TI = FMA(KP951056516, TH, TG);
+		    TQ = FNMS(KP951056516, TH, TG);
+		    TL = FNMS(KP559016994, Ts, Tr);
+		    TN = FNMS(KP951056516, TM, TL);
+		    TT = FMA(KP951056516, TM, TL);
+		    {
+			 E TF, TJ, TK, TO;
+			 TF = W[2];
+			 TJ = TF * TI;
+			 TK = W[3];
+			 TO = TK * TI;
+			 cr[WS(rs, 2)] = FNMS(TK, TN, TJ);
+			 ci[WS(rs, 2)] = FMA(TF, TN, TO);
+		    }
+		    {
+			 E TP, TR, TS, TU;
+			 TP = W[4];
+			 TR = TP * TQ;
+			 TS = W[5];
+			 TU = TS * TQ;
+			 cr[WS(rs, 3)] = FNMS(TS, TT, TR);
+			 ci[WS(rs, 3)] = FMA(TP, TT, TU);
+		    }
+	       }
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_FULL, 1, 5},
+     {TW_NEXT, 1, 0}
+};
+
+static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, {14, 8, 26, 0} };
+
+void X(codelet_hb_5) (planner *p) {
+     X(khc2hc_register) (p, hb_5, &desc);
+}
+#else
+
+/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include rdft/scalar/hb.h */
+
+/*
+ * This function contains 40 FP additions, 28 FP multiplications,
+ * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
+ * 27 stack variables, 4 constants, and 20 memory accesses
+ */
+#include "rdft/scalar/hb.h"
+
+static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
+{
+     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
+     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
+     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
+     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
+     {
+	  INT m;
+	  for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
+	       E T1, Tj, TG, Ts, T8, Ti, T9, Tn, TD, Tu, Tg, Tt;
+	       {
+		    E T4, Tq, T7, Tr;
+		    T1 = cr[0];
+		    {
+			 E T2, T3, T5, T6;
+			 T2 = cr[WS(rs, 1)];
+			 T3 = ci[0];
+			 T4 = T2 + T3;
+			 Tq = T2 - T3;
+			 T5 = cr[WS(rs, 2)];
+			 T6 = ci[WS(rs, 1)];
+			 T7 = T5 + T6;
+			 Tr = T5 - T6;
+		    }
+		    Tj = KP559016994 * (T4 - T7);
+		    TG = FMA(KP951056516, Tq, KP587785252 * Tr);
+		    Ts = FNMS(KP951056516, Tr, KP587785252 * Tq);
+		    T8 = T4 + T7;
+		    Ti = FNMS(KP250000000, T8, T1);
+	       }
+	       {
+		    E Tc, Tl, Tf, Tm;
+		    T9 = ci[WS(rs, 4)];
+		    {
+			 E Ta, Tb, Td, Te;
+			 Ta = ci[WS(rs, 3)];
+			 Tb = cr[WS(rs, 4)];
+			 Tc = Ta - Tb;
+			 Tl = Ta + Tb;
+			 Td = ci[WS(rs, 2)];
+			 Te = cr[WS(rs, 3)];
+			 Tf = Td - Te;
+			 Tm = Td + Te;
+		    }
+		    Tn = FNMS(KP951056516, Tm, KP587785252 * Tl);
+		    TD = FMA(KP951056516, Tl, KP587785252 * Tm);
+		    Tu = KP559016994 * (Tc - Tf);
+		    Tg = Tc + Tf;
+		    Tt = FNMS(KP250000000, Tg, T9);
+	       }
+	       cr[0] = T1 + T8;
+	       ci[0] = T9 + Tg;
+	       {
+		    E To, Ty, Tw, TA, Tk, Tv;
+		    Tk = Ti - Tj;
+		    To = Tk - Tn;
+		    Ty = Tk + Tn;
+		    Tv = Tt - Tu;
+		    Tw = Ts + Tv;
+		    TA = Tv - Ts;
+		    {
+			 E Th, Tp, Tx, Tz;
+			 Th = W[2];
+			 Tp = W[3];
+			 cr[WS(rs, 2)] = FNMS(Tp, Tw, Th * To);
+			 ci[WS(rs, 2)] = FMA(Th, Tw, Tp * To);
+			 Tx = W[4];
+			 Tz = W[5];
+			 cr[WS(rs, 3)] = FNMS(Tz, TA, Tx * Ty);
+			 ci[WS(rs, 3)] = FMA(Tx, TA, Tz * Ty);
+		    }
+	       }
+	       {
+		    E TE, TK, TI, TM, TC, TH;
+		    TC = Tj + Ti;
+		    TE = TC - TD;
+		    TK = TC + TD;
+		    TH = Tu + Tt;
+		    TI = TG + TH;
+		    TM = TH - TG;
+		    {
+			 E TB, TF, TJ, TL;
+			 TB = W[0];
+			 TF = W[1];
+			 cr[WS(rs, 1)] = FNMS(TF, TI, TB * TE);
+			 ci[WS(rs, 1)] = FMA(TB, TI, TF * TE);
+			 TJ = W[6];
+			 TL = W[7];
+			 cr[WS(rs, 4)] = FNMS(TL, TM, TJ * TK);
+			 ci[WS(rs, 4)] = FMA(TJ, TM, TL * TK);
+		    }
+	       }
+	  }
+     }
+}
+
+static const tw_instr twinstr[] = {
+     {TW_FULL, 1, 5},
+     {TW_NEXT, 1, 0}
+};
+
+static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, {26, 14, 14, 0} };
+
+void X(codelet_hb_5) (planner *p) {
+     X(khc2hc_register) (p, hb_5, &desc);
+}
+#endif