Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cb/hb_15.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cb/hb_15.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,810 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:07:32 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -dif -name hb_15 -include rdft/scalar/hb.h */ + +/* + * This function contains 184 FP additions, 140 FP multiplications, + * (or, 72 additions, 28 multiplications, 112 fused multiply/add), + * 78 stack variables, 6 constants, and 60 memory accesses + */ +#include "rdft/scalar/hb.h" + +static void hb_15(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP618033988, +0.618033988749894848204586834365638117720309180); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 28); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { + E T5, T11, T1C, T2U, T2f, T3f, TH, T19, T18, TS, T12, T13, T14, T3a, T3g; + E Ts, Tv, T37, T3h, T28, T2h, T21, T2g, T2V, T2W, T2X, T2Y, T2Z, T30, T31; + E T1F, T1I, T1J, T1M, T1P, T1Q, T1R; + { + E T1, TX, T4, T2e, T10, T1B, T1A, T2d; + T1 = cr[0]; + TX = ci[WS(rs, 14)]; + { + E T2, T3, TY, TZ; + T2 = cr[WS(rs, 5)]; + T3 = ci[WS(rs, 4)]; + T4 = T2 + T3; + T2e = T2 - T3; + TY = ci[WS(rs, 9)]; + TZ = cr[WS(rs, 10)]; + T10 = TY - TZ; + T1B = TY + TZ; + } + T5 = T1 + T4; + T11 = TX + T10; + T1A = FNMS(KP500000000, T4, T1); + T1C = FNMS(KP866025403, T1B, T1A); + T2U = FMA(KP866025403, T1B, T1A); + T2d = FNMS(KP500000000, T10, TX); + T2f = FMA(KP866025403, T2e, T2d); + T3f = FNMS(KP866025403, T2e, T2d); + } + { + E Ta, T1W, T1D, Tl, T23, T1K, Tf, T1Z, T1G, TR, T1Y, T1H, Tq, T26, T1N; + E TG, T25, T1O, TM, T1V, T1E, TB, T22, T1L, T38, T39; + { + E T6, T7, T8, T9; + T6 = cr[WS(rs, 3)]; + T7 = ci[WS(rs, 6)]; + T8 = ci[WS(rs, 1)]; + T9 = T7 + T8; + Ta = T6 + T9; + T1W = T7 - T8; + T1D = FNMS(KP500000000, T9, T6); + } + { + E Th, Ti, Tj, Tk; + Th = cr[WS(rs, 6)]; + Ti = ci[WS(rs, 3)]; + Tj = cr[WS(rs, 1)]; + Tk = Ti + Tj; + Tl = Th + Tk; + T23 = Ti - Tj; + T1K = FNMS(KP500000000, Tk, Th); + } + { + E Tb, Tc, Td, Te; + Tb = ci[WS(rs, 2)]; + Tc = cr[WS(rs, 2)]; + Td = cr[WS(rs, 7)]; + Te = Tc + Td; + Tf = Tb + Te; + T1Z = Tc - Td; + T1G = FNMS(KP500000000, Te, Tb); + } + { + E TQ, TN, TO, TP; + TQ = cr[WS(rs, 12)]; + TN = ci[WS(rs, 12)]; + TO = ci[WS(rs, 7)]; + TP = TN + TO; + TR = TP - TQ; + T1Y = FMA(KP500000000, TP, TQ); + T1H = TO - TN; + } + { + E Tm, Tn, To, Tp; + Tm = ci[WS(rs, 5)]; + Tn = ci[0]; + To = cr[WS(rs, 4)]; + Tp = Tn + To; + Tq = Tm + Tp; + T26 = Tn - To; + T1N = FNMS(KP500000000, Tp, Tm); + } + { + E TF, TC, TD, TE; + TF = cr[WS(rs, 9)]; + TC = ci[WS(rs, 10)]; + TD = cr[WS(rs, 14)]; + TE = TC - TD; + TG = TE - TF; + T25 = FMA(KP500000000, TE, TF); + T1O = TC + TD; + } + { + E TI, TJ, TK, TL; + TI = ci[WS(rs, 11)]; + TJ = cr[WS(rs, 8)]; + TK = cr[WS(rs, 13)]; + TL = TJ + TK; + TM = TI - TL; + T1V = FMA(KP500000000, TL, TI); + T1E = TJ - TK; + } + { + E Tx, Ty, Tz, TA; + Tx = ci[WS(rs, 8)]; + Ty = ci[WS(rs, 13)]; + Tz = cr[WS(rs, 11)]; + TA = Ty - Tz; + TB = Tx + TA; + T22 = FNMS(KP500000000, TA, Tx); + T1L = Ty + Tz; + } + TH = TB - TG; + T19 = Ta - Tf; + T18 = Tl - Tq; + TS = TM - TR; + T12 = TM + TR; + T13 = TB + TG; + T14 = T12 + T13; + T38 = FNMS(KP866025403, T1W, T1V); + T39 = FMA(KP866025403, T1Z, T1Y); + T3a = T38 + T39; + T3g = T38 - T39; + { + E Tg, Tr, T1X, T20; + Tg = Ta + Tf; + Tr = Tl + Tq; + Ts = Tg + Tr; + Tv = Tg - Tr; + { + E T35, T36, T24, T27; + T35 = FNMS(KP866025403, T23, T22); + T36 = FMA(KP866025403, T26, T25); + T37 = T35 + T36; + T3h = T35 - T36; + T24 = FMA(KP866025403, T23, T22); + T27 = FNMS(KP866025403, T26, T25); + T28 = T24 + T27; + T2h = T24 - T27; + } + T1X = FMA(KP866025403, T1W, T1V); + T20 = FNMS(KP866025403, T1Z, T1Y); + T21 = T1X + T20; + T2g = T1X - T20; + T2V = FNMS(KP866025403, T1E, T1D); + T2W = FNMS(KP866025403, T1H, T1G); + T2X = T2V + T2W; + T2Y = FNMS(KP866025403, T1L, T1K); + T2Z = FNMS(KP866025403, T1O, T1N); + T30 = T2Y + T2Z; + T31 = T2X + T30; + T1F = FMA(KP866025403, T1E, T1D); + T1I = FMA(KP866025403, T1H, T1G); + T1J = T1F + T1I; + T1M = FMA(KP866025403, T1L, T1K); + T1P = FMA(KP866025403, T1O, T1N); + T1Q = T1M + T1P; + T1R = T1J + T1Q; + } + } + cr[0] = T5 + Ts; + ci[0] = T11 + T14; + { + E T1a, T1q, T17, T1p, TU, T1u, T1e, T1m, T15, T16; + T1a = FNMS(KP618033988, T19, T18); + T1q = FMA(KP618033988, T18, T19); + T15 = FNMS(KP250000000, T14, T11); + T16 = T12 - T13; + T17 = FNMS(KP559016994, T16, T15); + T1p = FMA(KP559016994, T16, T15); + { + E TT, T1l, Tw, T1k, Tu; + TT = FNMS(KP618033988, TS, TH); + T1l = FMA(KP618033988, TH, TS); + Tu = FNMS(KP250000000, Ts, T5); + Tw = FNMS(KP559016994, Tv, Tu); + T1k = FMA(KP559016994, Tv, Tu); + TU = FNMS(KP951056516, TT, Tw); + T1u = FMA(KP951056516, T1l, T1k); + T1e = FMA(KP951056516, TT, Tw); + T1m = FNMS(KP951056516, T1l, T1k); + } + { + E T1b, TW, T1c, Tt, TV; + T1b = FMA(KP951056516, T1a, T17); + TW = W[5]; + T1c = TW * TU; + Tt = W[4]; + TV = Tt * TU; + cr[WS(rs, 3)] = FNMS(TW, T1b, TV); + ci[WS(rs, 3)] = FMA(Tt, T1b, T1c); + } + { + E T1x, T1w, T1y, T1t, T1v; + T1x = FNMS(KP951056516, T1q, T1p); + T1w = W[17]; + T1y = T1w * T1u; + T1t = W[16]; + T1v = T1t * T1u; + cr[WS(rs, 9)] = FNMS(T1w, T1x, T1v); + ci[WS(rs, 9)] = FMA(T1t, T1x, T1y); + } + { + E T1h, T1g, T1i, T1d, T1f; + T1h = FNMS(KP951056516, T1a, T17); + T1g = W[23]; + T1i = T1g * T1e; + T1d = W[22]; + T1f = T1d * T1e; + cr[WS(rs, 12)] = FNMS(T1g, T1h, T1f); + ci[WS(rs, 12)] = FMA(T1d, T1h, T1i); + } + { + E T1r, T1o, T1s, T1j, T1n; + T1r = FMA(KP951056516, T1q, T1p); + T1o = W[11]; + T1s = T1o * T1m; + T1j = W[10]; + T1n = T1j * T1m; + cr[WS(rs, 6)] = FNMS(T1o, T1r, T1n); + ci[WS(rs, 6)] = FMA(T1j, T1r, T1s); + } + } + { + E T2o, T2E, T2N, T2P, T2Q, T2S, T2l, T2R, T2D, T2a, T2I, T2s, T2A; + { + E T2m, T2n, T2O, T2k, T2i, T2j; + T2m = T1F - T1I; + T2n = T1M - T1P; + T2o = FMA(KP618033988, T2n, T2m); + T2E = FNMS(KP618033988, T2m, T2n); + T2O = T1C + T1R; + T2N = W[18]; + T2P = T2N * T2O; + T2Q = W[19]; + T2S = T2Q * T2O; + T2k = T2g - T2h; + T2i = T2g + T2h; + T2j = FNMS(KP250000000, T2i, T2f); + T2l = FMA(KP559016994, T2k, T2j); + T2R = T2f + T2i; + T2D = FNMS(KP559016994, T2k, T2j); + { + E T29, T2z, T1U, T2y, T1S, T1T; + T29 = FMA(KP618033988, T28, T21); + T2z = FNMS(KP618033988, T21, T28); + T1S = FNMS(KP250000000, T1R, T1C); + T1T = T1J - T1Q; + T1U = FMA(KP559016994, T1T, T1S); + T2y = FNMS(KP559016994, T1T, T1S); + T2a = FNMS(KP951056516, T29, T1U); + T2I = FNMS(KP951056516, T2z, T2y); + T2s = FMA(KP951056516, T29, T1U); + T2A = FMA(KP951056516, T2z, T2y); + } + } + cr[WS(rs, 10)] = FNMS(T2Q, T2R, T2P); + ci[WS(rs, 10)] = FMA(T2N, T2R, T2S); + { + E T2p, T2c, T2q, T1z, T2b; + T2p = FMA(KP951056516, T2o, T2l); + T2c = W[1]; + T2q = T2c * T2a; + T1z = W[0]; + T2b = T1z * T2a; + cr[WS(rs, 1)] = FNMS(T2c, T2p, T2b); + ci[WS(rs, 1)] = FMA(T1z, T2p, T2q); + } + { + E T2L, T2K, T2M, T2H, T2J; + T2L = FMA(KP951056516, T2E, T2D); + T2K = W[25]; + T2M = T2K * T2I; + T2H = W[24]; + T2J = T2H * T2I; + cr[WS(rs, 13)] = FNMS(T2K, T2L, T2J); + ci[WS(rs, 13)] = FMA(T2H, T2L, T2M); + } + { + E T2F, T2C, T2G, T2x, T2B; + T2F = FNMS(KP951056516, T2E, T2D); + T2C = W[13]; + T2G = T2C * T2A; + T2x = W[12]; + T2B = T2x * T2A; + cr[WS(rs, 7)] = FNMS(T2C, T2F, T2B); + ci[WS(rs, 7)] = FMA(T2x, T2F, T2G); + } + { + E T2v, T2u, T2w, T2r, T2t; + T2v = FNMS(KP951056516, T2o, T2l); + T2u = W[7]; + T2w = T2u * T2s; + T2r = W[6]; + T2t = T2r * T2s; + cr[WS(rs, 4)] = FNMS(T2u, T2v, T2t); + ci[WS(rs, 4)] = FMA(T2r, T2v, T2w); + } + } + { + E T3o, T3E, T3N, T3P, T3Q, T3S, T3l, T3R, T3D, T3c, T3I, T3s, T3A; + { + E T3m, T3n, T3O, T3k, T3i, T3j; + T3m = T2Y - T2Z; + T3n = T2V - T2W; + T3o = FNMS(KP618033988, T3n, T3m); + T3E = FMA(KP618033988, T3m, T3n); + T3O = T2U + T31; + T3N = W[8]; + T3P = T3N * T3O; + T3Q = W[9]; + T3S = T3Q * T3O; + T3k = T3g - T3h; + T3i = T3g + T3h; + T3j = FNMS(KP250000000, T3i, T3f); + T3l = FNMS(KP559016994, T3k, T3j); + T3R = T3f + T3i; + T3D = FMA(KP559016994, T3k, T3j); + { + E T3b, T3z, T34, T3y, T32, T33; + T3b = FNMS(KP618033988, T3a, T37); + T3z = FMA(KP618033988, T37, T3a); + T32 = FNMS(KP250000000, T31, T2U); + T33 = T2X - T30; + T34 = FNMS(KP559016994, T33, T32); + T3y = FMA(KP559016994, T33, T32); + T3c = FMA(KP951056516, T3b, T34); + T3I = FMA(KP951056516, T3z, T3y); + T3s = FNMS(KP951056516, T3b, T34); + T3A = FNMS(KP951056516, T3z, T3y); + } + } + cr[WS(rs, 5)] = FNMS(T3Q, T3R, T3P); + ci[WS(rs, 5)] = FMA(T3N, T3R, T3S); + { + E T3p, T3e, T3q, T2T, T3d; + T3p = FNMS(KP951056516, T3o, T3l); + T3e = W[3]; + T3q = T3e * T3c; + T2T = W[2]; + T3d = T2T * T3c; + cr[WS(rs, 2)] = FNMS(T3e, T3p, T3d); + ci[WS(rs, 2)] = FMA(T2T, T3p, T3q); + } + { + E T3L, T3K, T3M, T3H, T3J; + T3L = FNMS(KP951056516, T3E, T3D); + T3K = W[27]; + T3M = T3K * T3I; + T3H = W[26]; + T3J = T3H * T3I; + cr[WS(rs, 14)] = FNMS(T3K, T3L, T3J); + ci[WS(rs, 14)] = FMA(T3H, T3L, T3M); + } + { + E T3F, T3C, T3G, T3x, T3B; + T3F = FMA(KP951056516, T3E, T3D); + T3C = W[21]; + T3G = T3C * T3A; + T3x = W[20]; + T3B = T3x * T3A; + cr[WS(rs, 11)] = FNMS(T3C, T3F, T3B); + ci[WS(rs, 11)] = FMA(T3x, T3F, T3G); + } + { + E T3v, T3u, T3w, T3r, T3t; + T3v = FMA(KP951056516, T3o, T3l); + T3u = W[15]; + T3w = T3u * T3s; + T3r = W[14]; + T3t = T3r * T3s; + cr[WS(rs, 8)] = FNMS(T3u, T3v, T3t); + ci[WS(rs, 8)] = FMA(T3r, T3v, T3w); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 15}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 15, "hb_15", twinstr, &GENUS, {72, 28, 112, 0} }; + +void X(codelet_hb_15) (planner *p) { + X(khc2hc_register) (p, hb_15, &desc); +} +#else + +/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -dif -name hb_15 -include rdft/scalar/hb.h */ + +/* + * This function contains 184 FP additions, 112 FP multiplications, + * (or, 128 additions, 56 multiplications, 56 fused multiply/add), + * 75 stack variables, 6 constants, and 60 memory accesses + */ +#include "rdft/scalar/hb.h" + +static void hb_15(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP559016994, +0.559016994374947424102293417182819058860154590); + DK(KP250000000, +0.250000000000000000000000000000000000000000000); + DK(KP951056516, +0.951056516295153572116439333379382143405698634); + DK(KP587785252, +0.587785252292473129168705954639072768597652438); + DK(KP500000000, +0.500000000000000000000000000000000000000000000); + DK(KP866025403, +0.866025403784438646763723170752936183471402627); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 28); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { + E T5, T10, T1J, T2C, T2c, T2M, TH, T18, T17, TS, T2Q, T2R, T2S, Tg, Tr; + E Ts, T11, T12, T13, T2N, T2O, T2P, T1u, T1x, T1y, T1W, T1Z, T28, T1P, T1S; + E T27, T1B, T1E, T1F, T2G, T2H, T2I, T2D, T2E, T2F; + { + E T1, TW, T4, T2a, TZ, T1I, T1H, T2b; + T1 = cr[0]; + TW = ci[WS(rs, 14)]; + { + E T2, T3, TX, TY; + T2 = cr[WS(rs, 5)]; + T3 = ci[WS(rs, 4)]; + T4 = T2 + T3; + T2a = KP866025403 * (T2 - T3); + TX = ci[WS(rs, 9)]; + TY = cr[WS(rs, 10)]; + TZ = TX - TY; + T1I = KP866025403 * (TX + TY); + } + T5 = T1 + T4; + T10 = TW + TZ; + T1H = FNMS(KP500000000, T4, T1); + T1J = T1H - T1I; + T2C = T1H + T1I; + T2b = FNMS(KP500000000, TZ, TW); + T2c = T2a + T2b; + T2M = T2b - T2a; + } + { + E Ta, T1N, T1s, Tl, T1U, T1z, Tf, T1Q, T1v, TG, T1R, T1w, Tq, T1X, T1C; + E TM, T1V, T1A, TB, T1O, T1t, TR, T1Y, T1D; + { + E T6, T7, T8, T9; + T6 = cr[WS(rs, 3)]; + T7 = ci[WS(rs, 6)]; + T8 = ci[WS(rs, 1)]; + T9 = T7 + T8; + Ta = T6 + T9; + T1N = KP866025403 * (T7 - T8); + T1s = FNMS(KP500000000, T9, T6); + } + { + E Th, Ti, Tj, Tk; + Th = cr[WS(rs, 6)]; + Ti = ci[WS(rs, 3)]; + Tj = cr[WS(rs, 1)]; + Tk = Ti + Tj; + Tl = Th + Tk; + T1U = KP866025403 * (Ti - Tj); + T1z = FNMS(KP500000000, Tk, Th); + } + { + E Tb, Tc, Td, Te; + Tb = ci[WS(rs, 2)]; + Tc = cr[WS(rs, 2)]; + Td = cr[WS(rs, 7)]; + Te = Tc + Td; + Tf = Tb + Te; + T1Q = KP866025403 * (Tc - Td); + T1v = FNMS(KP500000000, Te, Tb); + } + { + E TF, TC, TD, TE; + TF = cr[WS(rs, 12)]; + TC = ci[WS(rs, 12)]; + TD = ci[WS(rs, 7)]; + TE = TC + TD; + TG = TE - TF; + T1R = FMA(KP500000000, TE, TF); + T1w = KP866025403 * (TD - TC); + } + { + E Tm, Tn, To, Tp; + Tm = ci[WS(rs, 5)]; + Tn = ci[0]; + To = cr[WS(rs, 4)]; + Tp = Tn + To; + Tq = Tm + Tp; + T1X = KP866025403 * (Tn - To); + T1C = FNMS(KP500000000, Tp, Tm); + } + { + E TI, TJ, TK, TL; + TI = ci[WS(rs, 8)]; + TJ = ci[WS(rs, 13)]; + TK = cr[WS(rs, 11)]; + TL = TJ - TK; + TM = TI + TL; + T1V = FNMS(KP500000000, TL, TI); + T1A = KP866025403 * (TJ + TK); + } + { + E Tx, Ty, Tz, TA; + Tx = ci[WS(rs, 11)]; + Ty = cr[WS(rs, 8)]; + Tz = cr[WS(rs, 13)]; + TA = Ty + Tz; + TB = Tx - TA; + T1O = FMA(KP500000000, TA, Tx); + T1t = KP866025403 * (Ty - Tz); + } + { + E TQ, TN, TO, TP; + TQ = cr[WS(rs, 9)]; + TN = ci[WS(rs, 10)]; + TO = cr[WS(rs, 14)]; + TP = TN - TO; + TR = TP - TQ; + T1Y = FMA(KP500000000, TP, TQ); + T1D = KP866025403 * (TN + TO); + } + TH = TB - TG; + T18 = Tl - Tq; + T17 = Ta - Tf; + TS = TM - TR; + T2Q = T1V - T1U; + T2R = T1X + T1Y; + T2S = T2Q - T2R; + Tg = Ta + Tf; + Tr = Tl + Tq; + Ts = Tg + Tr; + T11 = TB + TG; + T12 = TM + TR; + T13 = T11 + T12; + T2N = T1O - T1N; + T2O = T1Q + T1R; + T2P = T2N - T2O; + T1u = T1s + T1t; + T1x = T1v + T1w; + T1y = T1u + T1x; + T1W = T1U + T1V; + T1Z = T1X - T1Y; + T28 = T1W + T1Z; + T1P = T1N + T1O; + T1S = T1Q - T1R; + T27 = T1P + T1S; + T1B = T1z + T1A; + T1E = T1C + T1D; + T1F = T1B + T1E; + T2G = T1z - T1A; + T2H = T1C - T1D; + T2I = T2G + T2H; + T2D = T1s - T1t; + T2E = T1v - T1w; + T2F = T2D + T2E; + } + cr[0] = T5 + Ts; + ci[0] = T10 + T13; + { + E TT, T19, T1k, T1h, T16, T1l, Tw, T1g; + TT = FNMS(KP951056516, TS, KP587785252 * TH); + T19 = FNMS(KP951056516, T18, KP587785252 * T17); + T1k = FMA(KP951056516, T17, KP587785252 * T18); + T1h = FMA(KP951056516, TH, KP587785252 * TS); + { + E T14, T15, Tu, Tv; + T14 = FNMS(KP250000000, T13, T10); + T15 = KP559016994 * (T11 - T12); + T16 = T14 - T15; + T1l = T15 + T14; + Tu = FNMS(KP250000000, Ts, T5); + Tv = KP559016994 * (Tg - Tr); + Tw = Tu - Tv; + T1g = Tv + Tu; + } + { + E TU, T1a, Tt, TV; + TU = Tw + TT; + T1a = T16 - T19; + Tt = W[4]; + TV = W[5]; + cr[WS(rs, 3)] = FNMS(TV, T1a, Tt * TU); + ci[WS(rs, 3)] = FMA(TV, TU, Tt * T1a); + } + { + E T1o, T1q, T1n, T1p; + T1o = T1g + T1h; + T1q = T1l - T1k; + T1n = W[16]; + T1p = W[17]; + cr[WS(rs, 9)] = FNMS(T1p, T1q, T1n * T1o); + ci[WS(rs, 9)] = FMA(T1p, T1o, T1n * T1q); + } + { + E T1c, T1e, T1b, T1d; + T1c = Tw - TT; + T1e = T19 + T16; + T1b = W[22]; + T1d = W[23]; + cr[WS(rs, 12)] = FNMS(T1d, T1e, T1b * T1c); + ci[WS(rs, 12)] = FMA(T1d, T1c, T1b * T1e); + } + { + E T1i, T1m, T1f, T1j; + T1i = T1g - T1h; + T1m = T1k + T1l; + T1f = W[10]; + T1j = W[11]; + cr[WS(rs, 6)] = FNMS(T1j, T1m, T1f * T1i); + ci[WS(rs, 6)] = FMA(T1j, T1i, T1f * T1m); + } + } + { + E T21, T2n, T26, T2q, T1M, T2y, T2m, T2f, T2A, T2r, T2x, T2z; + { + E T1T, T20, T24, T25; + T1T = T1P - T1S; + T20 = T1W - T1Z; + T21 = FMA(KP951056516, T1T, KP587785252 * T20); + T2n = FNMS(KP951056516, T20, KP587785252 * T1T); + T24 = T1u - T1x; + T25 = T1B - T1E; + T26 = FMA(KP951056516, T24, KP587785252 * T25); + T2q = FNMS(KP951056516, T25, KP587785252 * T24); + } + { + E T1G, T1K, T1L, T29, T2d, T2e; + T1G = KP559016994 * (T1y - T1F); + T1K = T1y + T1F; + T1L = FNMS(KP250000000, T1K, T1J); + T1M = T1G + T1L; + T2y = T1J + T1K; + T2m = T1L - T1G; + T29 = KP559016994 * (T27 - T28); + T2d = T27 + T28; + T2e = FNMS(KP250000000, T2d, T2c); + T2f = T29 + T2e; + T2A = T2c + T2d; + T2r = T2e - T29; + } + T2x = W[18]; + T2z = W[19]; + cr[WS(rs, 10)] = FNMS(T2z, T2A, T2x * T2y); + ci[WS(rs, 10)] = FMA(T2z, T2y, T2x * T2A); + { + E T2u, T2w, T2t, T2v; + T2u = T2m + T2n; + T2w = T2r - T2q; + T2t = W[24]; + T2v = W[25]; + cr[WS(rs, 13)] = FNMS(T2v, T2w, T2t * T2u); + ci[WS(rs, 13)] = FMA(T2v, T2u, T2t * T2w); + } + { + E T22, T2g, T1r, T23; + T22 = T1M - T21; + T2g = T26 + T2f; + T1r = W[0]; + T23 = W[1]; + cr[WS(rs, 1)] = FNMS(T23, T2g, T1r * T22); + ci[WS(rs, 1)] = FMA(T23, T22, T1r * T2g); + } + { + E T2i, T2k, T2h, T2j; + T2i = T1M + T21; + T2k = T2f - T26; + T2h = W[6]; + T2j = W[7]; + cr[WS(rs, 4)] = FNMS(T2j, T2k, T2h * T2i); + ci[WS(rs, 4)] = FMA(T2j, T2i, T2h * T2k); + } + { + E T2o, T2s, T2l, T2p; + T2o = T2m - T2n; + T2s = T2q + T2r; + T2l = W[12]; + T2p = W[13]; + cr[WS(rs, 7)] = FNMS(T2p, T2s, T2l * T2o); + ci[WS(rs, 7)] = FMA(T2p, T2o, T2l * T2s); + } + } + { + E T31, T3h, T36, T3k, T2K, T3g, T2Y, T2U, T3l, T39, T2B, T2L; + { + E T2Z, T30, T34, T35; + T2Z = T2N + T2O; + T30 = T2Q + T2R; + T31 = FNMS(KP951056516, T30, KP587785252 * T2Z); + T3h = FMA(KP951056516, T2Z, KP587785252 * T30); + T34 = T2D - T2E; + T35 = T2G - T2H; + T36 = FNMS(KP951056516, T35, KP587785252 * T34); + T3k = FMA(KP951056516, T34, KP587785252 * T35); + } + { + E T2X, T2J, T2W, T38, T2T, T37; + T2X = KP559016994 * (T2F - T2I); + T2J = T2F + T2I; + T2W = FNMS(KP250000000, T2J, T2C); + T2K = T2C + T2J; + T3g = T2X + T2W; + T2Y = T2W - T2X; + T38 = KP559016994 * (T2P - T2S); + T2T = T2P + T2S; + T37 = FNMS(KP250000000, T2T, T2M); + T2U = T2M + T2T; + T3l = T38 + T37; + T39 = T37 - T38; + } + T2B = W[8]; + T2L = W[9]; + cr[WS(rs, 5)] = FNMS(T2L, T2U, T2B * T2K); + ci[WS(rs, 5)] = FMA(T2L, T2K, T2B * T2U); + { + E T3o, T3q, T3n, T3p; + T3o = T3g + T3h; + T3q = T3l - T3k; + T3n = W[26]; + T3p = W[27]; + cr[WS(rs, 14)] = FNMS(T3p, T3q, T3n * T3o); + ci[WS(rs, 14)] = FMA(T3n, T3q, T3p * T3o); + } + { + E T32, T3a, T2V, T33; + T32 = T2Y - T31; + T3a = T36 + T39; + T2V = W[2]; + T33 = W[3]; + cr[WS(rs, 2)] = FNMS(T33, T3a, T2V * T32); + ci[WS(rs, 2)] = FMA(T2V, T3a, T33 * T32); + } + { + E T3c, T3e, T3b, T3d; + T3c = T2Y + T31; + T3e = T39 - T36; + T3b = W[14]; + T3d = W[15]; + cr[WS(rs, 8)] = FNMS(T3d, T3e, T3b * T3c); + ci[WS(rs, 8)] = FMA(T3b, T3e, T3d * T3c); + } + { + E T3i, T3m, T3f, T3j; + T3i = T3g - T3h; + T3m = T3k + T3l; + T3f = W[20]; + T3j = W[21]; + cr[WS(rs, 11)] = FNMS(T3j, T3m, T3f * T3i); + ci[WS(rs, 11)] = FMA(T3f, T3m, T3j * T3i); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_FULL, 1, 15}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 15, "hb_15", twinstr, &GENUS, {128, 56, 56, 0} }; + +void X(codelet_hb_15) (planner *p) { + X(khc2hc_register) (p, hb_15, &desc); +} +#endif