Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/rdft/scalar/r2cb/hb2_16.c @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/rdft/scalar/r2cb/hb2_16.c Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,858 @@ +/* + * Copyright (c) 2003, 2007-14 Matteo Frigo + * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +/* This file was automatically generated --- DO NOT EDIT */ +/* Generated on Thu May 24 08:07:37 EDT 2018 */ + +#include "rdft/codelet-rdft.h" + +#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) + +/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hb2_16 -include rdft/scalar/hb.h */ + +/* + * This function contains 196 FP additions, 134 FP multiplications, + * (or, 104 additions, 42 multiplications, 92 fused multiply/add), + * 93 stack variables, 3 constants, and 64 memory accesses + */ +#include "rdft/scalar/hb.h" + +static void hb2_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + DK(KP414213562, +0.414213562373095048801688724209698078569671875); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) { + E Tv, Tw, T2z, T2C, TB, TF, Ty, Tz, T1V, TA, T2G, T3Q, T3C, T3g, T3L; + E T30, T3m, T3z, T3w, T3s, T1X, T1Y, T2u, T2c, T2p, TE, TG, T1G, T1o, T1D; + { + E T3f, T3l, T2F, T3r, T2Z, T3v, TD, Tx; + Tv = W[0]; + Tw = W[2]; + Tx = Tv * Tw; + T2z = W[6]; + T3f = Tv * T2z; + T2C = W[7]; + T3l = Tv * T2C; + TB = W[4]; + T2F = Tv * TB; + T3r = Tw * TB; + TF = W[5]; + T2Z = Tv * TF; + T3v = Tw * TF; + Ty = W[1]; + Tz = W[3]; + TD = Tv * Tz; + T1V = FMA(Ty, Tz, Tx); + TA = FNMS(Ty, Tz, Tx); + T2G = FNMS(Ty, TF, T2F); + T3Q = FMA(Tz, TB, T3v); + T3C = FNMS(Ty, TB, T2Z); + T3g = FMA(Ty, T2C, T3f); + T3L = FNMS(Tz, TF, T3r); + T30 = FMA(Ty, TB, T2Z); + T3m = FNMS(Ty, T2z, T3l); + T3z = FMA(Ty, TF, T2F); + T3w = FNMS(Tz, TB, T3v); + T3s = FMA(Tz, TF, T3r); + { + E T1W, T2b, TC, T1n; + T1W = T1V * TB; + T2b = T1V * TF; + T1X = FNMS(Ty, Tw, TD); + T1Y = FNMS(T1X, TF, T1W); + T2u = FNMS(T1X, TB, T2b); + T2c = FMA(T1X, TB, T2b); + T2p = FMA(T1X, TF, T1W); + TC = TA * TB; + T1n = TA * TF; + TE = FMA(Ty, Tw, TD); + TG = FNMS(TE, TF, TC); + T1G = FNMS(TE, TB, T1n); + T1o = FMA(TE, TB, T1n); + T1D = FMA(TE, TF, TC); + } + } + { + E TL, T1Z, T2d, T1t, T31, T34, T3n, T3D, T3E, T3R, T1w, T20, Tf, T3M, T2L; + E T3h, TW, T2e, T3G, T3H, T3N, T2Q, T36, T2V, T37, Tu, T3S, T18, T1z, T24; + E T2g, T27, T2h, T1j, T1y; + { + E T3, TH, TU, T2I, T1s, T32, T6, T1p, Ta, TM, TK, T33, TP, T2J, Td; + E TR; + { + E T1, T2, TS, TT; + T1 = cr[0]; + T2 = ci[WS(rs, 7)]; + T3 = T1 + T2; + TH = T1 - T2; + TS = ci[WS(rs, 9)]; + TT = cr[WS(rs, 14)]; + TU = TS + TT; + T2I = TS - TT; + } + { + E T1q, T1r, T4, T5; + T1q = ci[WS(rs, 15)]; + T1r = cr[WS(rs, 8)]; + T1s = T1q + T1r; + T32 = T1q - T1r; + T4 = cr[WS(rs, 4)]; + T5 = ci[WS(rs, 3)]; + T6 = T4 + T5; + T1p = T4 - T5; + } + { + E T8, T9, TI, TJ; + T8 = cr[WS(rs, 2)]; + T9 = ci[WS(rs, 5)]; + Ta = T8 + T9; + TM = T8 - T9; + TI = ci[WS(rs, 11)]; + TJ = cr[WS(rs, 12)]; + TK = TI + TJ; + T33 = TI - TJ; + } + { + E TN, TO, Tb, Tc; + TN = ci[WS(rs, 13)]; + TO = cr[WS(rs, 10)]; + TP = TN + TO; + T2J = TN - TO; + Tb = ci[WS(rs, 1)]; + Tc = cr[WS(rs, 6)]; + Td = Tb + Tc; + TR = Tb - Tc; + } + TL = TH - TK; + T1Z = TH + TK; + T2d = T1s - T1p; + T1t = T1p + T1s; + T31 = Ta - Td; + T34 = T32 - T33; + T3n = T34 - T31; + { + E T1u, T1v, T7, Te; + T3D = T32 + T33; + T3E = T2J + T2I; + T3R = T3D - T3E; + T1u = TM + TP; + T1v = TR + TU; + T1w = T1u - T1v; + T20 = T1u + T1v; + T7 = T3 + T6; + Te = Ta + Td; + Tf = T7 + Te; + T3M = T7 - Te; + { + E T2H, T2K, TQ, TV; + T2H = T3 - T6; + T2K = T2I - T2J; + T2L = T2H + T2K; + T3h = T2H - T2K; + TQ = TM - TP; + TV = TR - TU; + TW = TQ + TV; + T2e = TQ - TV; + } + } + } + { + E Ti, T1e, T1c, T2N, T1h, T2O, Tl, T19, Tp, T13, T11, T2S, T16, T2T, Ts; + E TY, T2M, T2P; + { + E Tg, Th, T1a, T1b; + Tg = cr[WS(rs, 1)]; + Th = ci[WS(rs, 6)]; + Ti = Tg + Th; + T1e = Tg - Th; + T1a = ci[WS(rs, 14)]; + T1b = cr[WS(rs, 9)]; + T1c = T1a + T1b; + T2N = T1a - T1b; + } + { + E T1f, T1g, Tj, Tk; + T1f = ci[WS(rs, 10)]; + T1g = cr[WS(rs, 13)]; + T1h = T1f + T1g; + T2O = T1f - T1g; + Tj = cr[WS(rs, 5)]; + Tk = ci[WS(rs, 2)]; + Tl = Tj + Tk; + T19 = Tj - Tk; + } + { + E Tn, To, TZ, T10; + Tn = ci[0]; + To = cr[WS(rs, 7)]; + Tp = Tn + To; + T13 = Tn - To; + TZ = ci[WS(rs, 8)]; + T10 = cr[WS(rs, 15)]; + T11 = TZ + T10; + T2S = TZ - T10; + } + { + E T14, T15, Tq, Tr; + T14 = ci[WS(rs, 12)]; + T15 = cr[WS(rs, 11)]; + T16 = T14 + T15; + T2T = T14 - T15; + Tq = cr[WS(rs, 3)]; + Tr = ci[WS(rs, 4)]; + Ts = Tq + Tr; + TY = Tq - Tr; + } + T3G = T2N + T2O; + T3H = T2S + T2T; + T3N = T3H - T3G; + T2M = Ti - Tl; + T2P = T2N - T2O; + T2Q = T2M - T2P; + T36 = T2M + T2P; + { + E T2R, T2U, Tm, Tt; + T2R = Tp - Ts; + T2U = T2S - T2T; + T2V = T2R + T2U; + T37 = T2U - T2R; + Tm = Ti + Tl; + Tt = Tp + Ts; + Tu = Tm + Tt; + T3S = Tm - Tt; + } + { + E T12, T17, T22, T23; + T12 = TY - T11; + T17 = T13 - T16; + T18 = FNMS(KP414213562, T17, T12); + T1z = FMA(KP414213562, T12, T17); + T22 = T1c - T19; + T23 = T1e + T1h; + T24 = FNMS(KP414213562, T23, T22); + T2g = FMA(KP414213562, T22, T23); + } + { + E T25, T26, T1d, T1i; + T25 = TY + T11; + T26 = T13 + T16; + T27 = FNMS(KP414213562, T26, T25); + T2h = FMA(KP414213562, T25, T26); + T1d = T19 + T1c; + T1i = T1e - T1h; + T1j = FMA(KP414213562, T1i, T1d); + T1y = FNMS(KP414213562, T1d, T1i); + } + } + cr[0] = Tf + Tu; + { + E T3B, T3K, T3F, T3I, T3J, T3A; + T3A = Tf - Tu; + T3B = T3z * T3A; + T3K = T3C * T3A; + T3F = T3D + T3E; + T3I = T3G + T3H; + T3J = T3F - T3I; + ci[0] = T3F + T3I; + ci[WS(rs, 8)] = FMA(T3z, T3J, T3K); + cr[WS(rs, 8)] = FNMS(T3C, T3J, T3B); + } + { + E T3O, T3P, T3T, T3U; + T3O = T3M - T3N; + T3P = T3L * T3O; + T3T = T3R - T3S; + T3U = T3L * T3T; + cr[WS(rs, 12)] = FNMS(T3Q, T3T, T3P); + ci[WS(rs, 12)] = FMA(T3Q, T3O, T3U); + } + { + E T3V, T3W, T3X, T3Y; + T3V = T3M + T3N; + T3W = TA * T3V; + T3X = T3S + T3R; + T3Y = TA * T3X; + cr[WS(rs, 4)] = FNMS(TE, T3X, T3W); + ci[WS(rs, 4)] = FMA(TE, T3V, T3Y); + } + { + E T3j, T3t, T3p, T3x, T3i, T3o; + T3i = T37 - T36; + T3j = FNMS(KP707106781, T3i, T3h); + T3t = FMA(KP707106781, T3i, T3h); + T3o = T2Q - T2V; + T3p = FNMS(KP707106781, T3o, T3n); + T3x = FMA(KP707106781, T3o, T3n); + { + E T3k, T3q, T3u, T3y; + T3k = T3g * T3j; + cr[WS(rs, 14)] = FNMS(T3m, T3p, T3k); + T3q = T3g * T3p; + ci[WS(rs, 14)] = FMA(T3m, T3j, T3q); + T3u = T3s * T3t; + cr[WS(rs, 6)] = FNMS(T3w, T3x, T3u); + T3y = T3s * T3x; + ci[WS(rs, 6)] = FMA(T3w, T3t, T3y); + } + } + { + E T2X, T3b, T39, T3d, T2W, T35, T38; + T2W = T2Q + T2V; + T2X = FNMS(KP707106781, T2W, T2L); + T3b = FMA(KP707106781, T2W, T2L); + T35 = T31 + T34; + T38 = T36 + T37; + T39 = FNMS(KP707106781, T38, T35); + T3d = FMA(KP707106781, T38, T35); + { + E T2Y, T3a, T3c, T3e; + T2Y = T2G * T2X; + cr[WS(rs, 10)] = FNMS(T30, T39, T2Y); + T3a = T30 * T2X; + ci[WS(rs, 10)] = FMA(T2G, T39, T3a); + T3c = T1V * T3b; + cr[WS(rs, 2)] = FNMS(T1X, T3d, T3c); + T3e = T1X * T3b; + ci[WS(rs, 2)] = FMA(T1V, T3d, T3e); + } + } + { + E T29, T2l, T2j, T2n; + { + E T21, T28, T2f, T2i; + T21 = FNMS(KP707106781, T20, T1Z); + T28 = T24 + T27; + T29 = FMA(KP923879532, T28, T21); + T2l = FNMS(KP923879532, T28, T21); + T2f = FMA(KP707106781, T2e, T2d); + T2i = T2g - T2h; + T2j = FNMS(KP923879532, T2i, T2f); + T2n = FMA(KP923879532, T2i, T2f); + } + { + E T2a, T2k, T2m, T2o; + T2a = T1Y * T29; + cr[WS(rs, 11)] = FNMS(T2c, T2j, T2a); + T2k = T2c * T29; + ci[WS(rs, 11)] = FMA(T1Y, T2j, T2k); + T2m = Tw * T2l; + cr[WS(rs, 3)] = FNMS(Tz, T2n, T2m); + T2o = Tz * T2l; + ci[WS(rs, 3)] = FMA(Tw, T2n, T2o); + } + } + { + E T1l, T1E, T1B, T1H; + { + E TX, T1k, T1x, T1A; + TX = FNMS(KP707106781, TW, TL); + T1k = T18 - T1j; + T1l = FNMS(KP923879532, T1k, TX); + T1E = FMA(KP923879532, T1k, TX); + T1x = FNMS(KP707106781, T1w, T1t); + T1A = T1y - T1z; + T1B = FNMS(KP923879532, T1A, T1x); + T1H = FMA(KP923879532, T1A, T1x); + } + { + E T1m, T1C, T1F, T1I; + T1m = TG * T1l; + cr[WS(rs, 13)] = FNMS(T1o, T1B, T1m); + T1C = T1o * T1l; + ci[WS(rs, 13)] = FMA(TG, T1B, T1C); + T1F = T1D * T1E; + cr[WS(rs, 5)] = FNMS(T1G, T1H, T1F); + T1I = T1G * T1E; + ci[WS(rs, 5)] = FMA(T1D, T1H, T1I); + } + } + { + E T2s, T2A, T2x, T2D; + { + E T2q, T2r, T2v, T2w; + T2q = FMA(KP707106781, T20, T1Z); + T2r = T2g + T2h; + T2s = FNMS(KP923879532, T2r, T2q); + T2A = FMA(KP923879532, T2r, T2q); + T2v = FNMS(KP707106781, T2e, T2d); + T2w = T27 - T24; + T2x = FMA(KP923879532, T2w, T2v); + T2D = FNMS(KP923879532, T2w, T2v); + } + { + E T2t, T2y, T2B, T2E; + T2t = T2p * T2s; + cr[WS(rs, 7)] = FNMS(T2u, T2x, T2t); + T2y = T2p * T2x; + ci[WS(rs, 7)] = FMA(T2u, T2s, T2y); + T2B = T2z * T2A; + cr[WS(rs, 15)] = FNMS(T2C, T2D, T2B); + T2E = T2z * T2D; + ci[WS(rs, 15)] = FMA(T2C, T2A, T2E); + } + } + { + E T1L, T1R, T1P, T1T; + { + E T1J, T1K, T1N, T1O; + T1J = FMA(KP707106781, TW, TL); + T1K = T1y + T1z; + T1L = FNMS(KP923879532, T1K, T1J); + T1R = FMA(KP923879532, T1K, T1J); + T1N = FMA(KP707106781, T1w, T1t); + T1O = T1j + T18; + T1P = FNMS(KP923879532, T1O, T1N); + T1T = FMA(KP923879532, T1O, T1N); + } + { + E T1M, T1Q, T1S, T1U; + T1M = TB * T1L; + cr[WS(rs, 9)] = FNMS(TF, T1P, T1M); + T1Q = TB * T1P; + ci[WS(rs, 9)] = FMA(TF, T1L, T1Q); + T1S = Tv * T1R; + cr[WS(rs, 1)] = FNMS(Ty, T1T, T1S); + T1U = Tv * T1T; + ci[WS(rs, 1)] = FMA(Ty, T1R, T1U); + } + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 1, 1}, + {TW_CEXP, 1, 3}, + {TW_CEXP, 1, 9}, + {TW_CEXP, 1, 15}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 16, "hb2_16", twinstr, &GENUS, {104, 42, 92, 0} }; + +void X(codelet_hb2_16) (planner *p) { + X(khc2hc_register) (p, hb2_16, &desc); +} +#else + +/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hb2_16 -include rdft/scalar/hb.h */ + +/* + * This function contains 196 FP additions, 108 FP multiplications, + * (or, 156 additions, 68 multiplications, 40 fused multiply/add), + * 80 stack variables, 3 constants, and 64 memory accesses + */ +#include "rdft/scalar/hb.h" + +static void hb2_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) +{ + DK(KP382683432, +0.382683432365089771728459984030398866761344562); + DK(KP923879532, +0.923879532511286756128183189396788286822416626); + DK(KP707106781, +0.707106781186547524400844362104849039284835938); + { + INT m; + for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) { + E Tv, Ty, T1l, T1n, T1p, T1t, T27, T25, Tz, Tw, TB, T21, T1P, T1H, T1X; + E T17, T1L, T1N, T1v, T1w, T1x, T1B, T2F, T2T, T2b, T2R, T3j, T3x, T35, T3t; + { + E TA, T1J, T15, T1G, Tx, T1K, T16, T1F; + { + E T1m, T1s, T1o, T1r; + Tv = W[0]; + Ty = W[1]; + T1l = W[2]; + T1n = W[3]; + T1m = Tv * T1l; + T1s = Ty * T1l; + T1o = Ty * T1n; + T1r = Tv * T1n; + T1p = T1m + T1o; + T1t = T1r - T1s; + T27 = T1r + T1s; + T25 = T1m - T1o; + Tz = W[5]; + TA = Ty * Tz; + T1J = T1l * Tz; + T15 = Tv * Tz; + T1G = T1n * Tz; + Tw = W[4]; + Tx = Tv * Tw; + T1K = T1n * Tw; + T16 = Ty * Tw; + T1F = T1l * Tw; + } + TB = Tx - TA; + T21 = T1J + T1K; + T1P = T15 - T16; + T1H = T1F + T1G; + T1X = T1F - T1G; + T17 = T15 + T16; + T1L = T1J - T1K; + T1N = Tx + TA; + T1v = W[6]; + T1w = W[7]; + T1x = FMA(Tv, T1v, Ty * T1w); + T1B = FNMS(Ty, T1v, Tv * T1w); + { + E T2D, T2E, T29, T2a; + T2D = T25 * Tz; + T2E = T27 * Tw; + T2F = T2D + T2E; + T2T = T2D - T2E; + T29 = T25 * Tw; + T2a = T27 * Tz; + T2b = T29 - T2a; + T2R = T29 + T2a; + } + { + E T3h, T3i, T33, T34; + T3h = T1p * Tz; + T3i = T1t * Tw; + T3j = T3h + T3i; + T3x = T3h - T3i; + T33 = T1p * Tw; + T34 = T1t * Tz; + T35 = T33 - T34; + T3t = T33 + T34; + } + } + { + E T7, T36, T3k, TC, T1f, T2e, T2I, T1Q, Te, TJ, T1R, T18, T2L, T37, T2l; + E T3l, Tm, T1T, TT, T1h, T2A, T2N, T3b, T3n, Tt, T1U, T12, T1i, T2t, T2O; + E T3e, T3o; + { + E T3, T2c, T1e, T2d, T6, T2G, T1b, T2H; + { + E T1, T2, T1c, T1d; + T1 = cr[0]; + T2 = ci[WS(rs, 7)]; + T3 = T1 + T2; + T2c = T1 - T2; + T1c = ci[WS(rs, 11)]; + T1d = cr[WS(rs, 12)]; + T1e = T1c - T1d; + T2d = T1c + T1d; + } + { + E T4, T5, T19, T1a; + T4 = cr[WS(rs, 4)]; + T5 = ci[WS(rs, 3)]; + T6 = T4 + T5; + T2G = T4 - T5; + T19 = ci[WS(rs, 15)]; + T1a = cr[WS(rs, 8)]; + T1b = T19 - T1a; + T2H = T19 + T1a; + } + T7 = T3 + T6; + T36 = T2c + T2d; + T3k = T2H - T2G; + TC = T3 - T6; + T1f = T1b - T1e; + T2e = T2c - T2d; + T2I = T2G + T2H; + T1Q = T1b + T1e; + } + { + E Ta, T2f, TI, T2g, Td, T2i, TF, T2j; + { + E T8, T9, TG, TH; + T8 = cr[WS(rs, 2)]; + T9 = ci[WS(rs, 5)]; + Ta = T8 + T9; + T2f = T8 - T9; + TG = ci[WS(rs, 13)]; + TH = cr[WS(rs, 10)]; + TI = TG - TH; + T2g = TG + TH; + } + { + E Tb, Tc, TD, TE; + Tb = ci[WS(rs, 1)]; + Tc = cr[WS(rs, 6)]; + Td = Tb + Tc; + T2i = Tb - Tc; + TD = ci[WS(rs, 9)]; + TE = cr[WS(rs, 14)]; + TF = TD - TE; + T2j = TD + TE; + } + Te = Ta + Td; + TJ = TF - TI; + T1R = TI + TF; + T18 = Ta - Td; + { + E T2J, T2K, T2h, T2k; + T2J = T2f + T2g; + T2K = T2i + T2j; + T2L = KP707106781 * (T2J - T2K); + T37 = KP707106781 * (T2J + T2K); + T2h = T2f - T2g; + T2k = T2i - T2j; + T2l = KP707106781 * (T2h + T2k); + T3l = KP707106781 * (T2h - T2k); + } + } + { + E Ti, T2x, TR, T2y, Tl, T2u, TO, T2v, TL, TS; + { + E Tg, Th, TP, TQ; + Tg = cr[WS(rs, 1)]; + Th = ci[WS(rs, 6)]; + Ti = Tg + Th; + T2x = Tg - Th; + TP = ci[WS(rs, 10)]; + TQ = cr[WS(rs, 13)]; + TR = TP - TQ; + T2y = TP + TQ; + } + { + E Tj, Tk, TM, TN; + Tj = cr[WS(rs, 5)]; + Tk = ci[WS(rs, 2)]; + Tl = Tj + Tk; + T2u = Tj - Tk; + TM = ci[WS(rs, 14)]; + TN = cr[WS(rs, 9)]; + TO = TM - TN; + T2v = TM + TN; + } + Tm = Ti + Tl; + T1T = TO + TR; + TL = Ti - Tl; + TS = TO - TR; + TT = TL - TS; + T1h = TL + TS; + { + E T2w, T2z, T39, T3a; + T2w = T2u + T2v; + T2z = T2x - T2y; + T2A = FMA(KP923879532, T2w, KP382683432 * T2z); + T2N = FNMS(KP382683432, T2w, KP923879532 * T2z); + T39 = T2x + T2y; + T3a = T2v - T2u; + T3b = FNMS(KP923879532, T3a, KP382683432 * T39); + T3n = FMA(KP382683432, T3a, KP923879532 * T39); + } + } + { + E Tp, T2q, T10, T2r, Ts, T2n, TX, T2o, TU, T11; + { + E Tn, To, TY, TZ; + Tn = ci[0]; + To = cr[WS(rs, 7)]; + Tp = Tn + To; + T2q = Tn - To; + TY = ci[WS(rs, 12)]; + TZ = cr[WS(rs, 11)]; + T10 = TY - TZ; + T2r = TY + TZ; + } + { + E Tq, Tr, TV, TW; + Tq = cr[WS(rs, 3)]; + Tr = ci[WS(rs, 4)]; + Ts = Tq + Tr; + T2n = Tq - Tr; + TV = ci[WS(rs, 8)]; + TW = cr[WS(rs, 15)]; + TX = TV - TW; + T2o = TV + TW; + } + Tt = Tp + Ts; + T1U = TX + T10; + TU = Tp - Ts; + T11 = TX - T10; + T12 = TU + T11; + T1i = T11 - TU; + { + E T2p, T2s, T3c, T3d; + T2p = T2n - T2o; + T2s = T2q - T2r; + T2t = FNMS(KP382683432, T2s, KP923879532 * T2p); + T2O = FMA(KP382683432, T2p, KP923879532 * T2s); + T3c = T2q + T2r; + T3d = T2n + T2o; + T3e = FNMS(KP923879532, T3d, KP382683432 * T3c); + T3o = FMA(KP382683432, T3d, KP923879532 * T3c); + } + } + { + E Tf, Tu, T1O, T1S, T1V, T1W; + Tf = T7 + Te; + Tu = Tm + Tt; + T1O = Tf - Tu; + T1S = T1Q + T1R; + T1V = T1T + T1U; + T1W = T1S - T1V; + cr[0] = Tf + Tu; + ci[0] = T1S + T1V; + cr[WS(rs, 8)] = FNMS(T1P, T1W, T1N * T1O); + ci[WS(rs, 8)] = FMA(T1P, T1O, T1N * T1W); + } + { + E T3g, T3r, T3q, T3s; + { + E T38, T3f, T3m, T3p; + T38 = T36 - T37; + T3f = T3b + T3e; + T3g = T38 - T3f; + T3r = T38 + T3f; + T3m = T3k + T3l; + T3p = T3n - T3o; + T3q = T3m - T3p; + T3s = T3m + T3p; + } + cr[WS(rs, 11)] = FNMS(T3j, T3q, T35 * T3g); + ci[WS(rs, 11)] = FMA(T3j, T3g, T35 * T3q); + cr[WS(rs, 3)] = FNMS(T1n, T3s, T1l * T3r); + ci[WS(rs, 3)] = FMA(T1n, T3r, T1l * T3s); + } + { + E T3w, T3B, T3A, T3C; + { + E T3u, T3v, T3y, T3z; + T3u = T36 + T37; + T3v = T3n + T3o; + T3w = T3u - T3v; + T3B = T3u + T3v; + T3y = T3k - T3l; + T3z = T3b - T3e; + T3A = T3y + T3z; + T3C = T3y - T3z; + } + cr[WS(rs, 7)] = FNMS(T3x, T3A, T3t * T3w); + ci[WS(rs, 7)] = FMA(T3t, T3A, T3x * T3w); + cr[WS(rs, 15)] = FNMS(T1w, T3C, T1v * T3B); + ci[WS(rs, 15)] = FMA(T1v, T3C, T1w * T3B); + } + { + E T14, T1q, T1k, T1u; + { + E TK, T13, T1g, T1j; + TK = TC + TJ; + T13 = KP707106781 * (TT + T12); + T14 = TK - T13; + T1q = TK + T13; + T1g = T18 + T1f; + T1j = KP707106781 * (T1h + T1i); + T1k = T1g - T1j; + T1u = T1g + T1j; + } + cr[WS(rs, 10)] = FNMS(T17, T1k, TB * T14); + ci[WS(rs, 10)] = FMA(T17, T14, TB * T1k); + cr[WS(rs, 2)] = FNMS(T1t, T1u, T1p * T1q); + ci[WS(rs, 2)] = FMA(T1t, T1q, T1p * T1u); + } + { + E T1A, T1I, T1E, T1M; + { + E T1y, T1z, T1C, T1D; + T1y = TC - TJ; + T1z = KP707106781 * (T1i - T1h); + T1A = T1y - T1z; + T1I = T1y + T1z; + T1C = T1f - T18; + T1D = KP707106781 * (TT - T12); + T1E = T1C - T1D; + T1M = T1C + T1D; + } + cr[WS(rs, 14)] = FNMS(T1B, T1E, T1x * T1A); + ci[WS(rs, 14)] = FMA(T1x, T1E, T1B * T1A); + cr[WS(rs, 6)] = FNMS(T1L, T1M, T1H * T1I); + ci[WS(rs, 6)] = FMA(T1H, T1M, T1L * T1I); + } + { + E T2C, T2S, T2Q, T2U; + { + E T2m, T2B, T2M, T2P; + T2m = T2e - T2l; + T2B = T2t - T2A; + T2C = T2m - T2B; + T2S = T2m + T2B; + T2M = T2I - T2L; + T2P = T2N - T2O; + T2Q = T2M - T2P; + T2U = T2M + T2P; + } + cr[WS(rs, 13)] = FNMS(T2F, T2Q, T2b * T2C); + ci[WS(rs, 13)] = FMA(T2F, T2C, T2b * T2Q); + cr[WS(rs, 5)] = FNMS(T2T, T2U, T2R * T2S); + ci[WS(rs, 5)] = FMA(T2T, T2S, T2R * T2U); + } + { + E T2X, T31, T30, T32; + { + E T2V, T2W, T2Y, T2Z; + T2V = T2e + T2l; + T2W = T2N + T2O; + T2X = T2V - T2W; + T31 = T2V + T2W; + T2Y = T2I + T2L; + T2Z = T2A + T2t; + T30 = T2Y - T2Z; + T32 = T2Y + T2Z; + } + cr[WS(rs, 9)] = FNMS(Tz, T30, Tw * T2X); + ci[WS(rs, 9)] = FMA(Tw, T30, Tz * T2X); + cr[WS(rs, 1)] = FNMS(Ty, T32, Tv * T31); + ci[WS(rs, 1)] = FMA(Tv, T32, Ty * T31); + } + { + E T20, T26, T24, T28; + { + E T1Y, T1Z, T22, T23; + T1Y = T7 - Te; + T1Z = T1U - T1T; + T20 = T1Y - T1Z; + T26 = T1Y + T1Z; + T22 = T1Q - T1R; + T23 = Tm - Tt; + T24 = T22 - T23; + T28 = T23 + T22; + } + cr[WS(rs, 12)] = FNMS(T21, T24, T1X * T20); + ci[WS(rs, 12)] = FMA(T1X, T24, T21 * T20); + cr[WS(rs, 4)] = FNMS(T27, T28, T25 * T26); + ci[WS(rs, 4)] = FMA(T25, T28, T27 * T26); + } + } + } + } +} + +static const tw_instr twinstr[] = { + {TW_CEXP, 1, 1}, + {TW_CEXP, 1, 3}, + {TW_CEXP, 1, 9}, + {TW_CEXP, 1, 15}, + {TW_NEXT, 1, 0} +}; + +static const hc2hc_desc desc = { 16, "hb2_16", twinstr, &GENUS, {156, 68, 40, 0} }; + +void X(codelet_hb2_16) (planner *p) { + X(khc2hc_register) (p, hb2_16, &desc); +} +#endif