diff src/fftw-3.3.8/rdft/rank-geq2.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.8/rdft/rank-geq2.c	Tue Nov 19 14:52:55 2019 +0000
@@ -0,0 +1,207 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+/* plans for RDFT of rank >= 2 (multidimensional) */
+
+/* FIXME: this solver cannot strictly be applied to multidimensional
+   DHTs, since the latter are not separable...up to rnk-1 additional
+   post-processing passes may be required.  See also:
+
+   R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast
+   two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986).
+
+   H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm
+   using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987).
+*/
+
+#include "rdft/rdft.h"
+
+typedef struct {
+     solver super;
+     int spltrnk;
+     const int *buddies;
+     size_t nbuddies;
+} S;
+
+typedef struct {
+     plan_rdft super;
+
+     plan *cld1, *cld2;
+     const S *solver;
+} P;
+
+/* Compute multi-dimensional RDFT by applying the two cld plans
+   (lower-rnk RDFTs). */
+static void apply(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+     plan_rdft *cld1, *cld2;
+
+     cld1 = (plan_rdft *) ego->cld1;
+     cld1->apply(ego->cld1, I, O);
+
+     cld2 = (plan_rdft *) ego->cld2;
+     cld2->apply(ego->cld2, O, O);
+}
+
+
+static void awake(plan *ego_, enum wakefulness wakefulness)
+{
+     P *ego = (P *) ego_;
+     X(plan_awake)(ego->cld1, wakefulness);
+     X(plan_awake)(ego->cld2, wakefulness);
+}
+
+static void destroy(plan *ego_)
+{
+     P *ego = (P *) ego_;
+     X(plan_destroy_internal)(ego->cld2);
+     X(plan_destroy_internal)(ego->cld1);
+}
+
+static void print(const plan *ego_, printer *p)
+{
+     const P *ego = (const P *) ego_;
+     const S *s = ego->solver;
+     p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))",
+	      s->spltrnk, ego->cld1, ego->cld2);
+}
+
+static int picksplit(const S *ego, const tensor *sz, int *rp)
+{
+     A(sz->rnk > 1); /* cannot split rnk <= 1 */
+     if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp))
+	  return 0;
+     *rp += 1; /* convert from dim. index to rank */
+     if (*rp >= sz->rnk) /* split must reduce rank */
+	  return 0;
+     return 1;
+}
+
+static int applicable0(const solver *ego_, const problem *p_, int *rp)
+{
+     const problem_rdft *p = (const problem_rdft *) p_;
+     const S *ego = (const S *)ego_;
+     return (1
+	     && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk)
+	     && p->sz->rnk >= 2
+	     && picksplit(ego, p->sz, rp)
+	  );
+}
+
+/* TODO: revise this. */
+static int applicable(const solver *ego_, const problem *p_, 
+		      const planner *plnr, int *rp)
+{
+     const S *ego = (const S *)ego_;
+
+     if (!applicable0(ego_, p_, rp)) return 0;
+
+     if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0]))
+	  return 0;
+
+     if (NO_UGLYP(plnr)) {
+	  /* Heuristic: if the vector stride is greater than the transform
+	     sz, don't use (prefer to do the vector loop first with a
+	     vrank-geq1 plan). */
+	  const problem_rdft *p = (const problem_rdft *) p_;
+
+	  if (p->vecsz->rnk > 0 &&
+	      X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz))
+	       return 0;
+     }
+
+     return 1;
+}
+
+static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
+{
+     const S *ego = (const S *) ego_;
+     const problem_rdft *p;
+     P *pln;
+     plan *cld1 = 0, *cld2 = 0;
+     tensor *sz1, *sz2, *vecszi, *sz2i;
+     int spltrnk;
+
+     static const plan_adt padt = {
+	  X(rdft_solve), awake, print, destroy
+     };
+
+     if (!applicable(ego_, p_, plnr, &spltrnk))
+          return (plan *) 0;
+
+     p = (const problem_rdft *) p_;
+     X(tensor_split)(p->sz, &sz1, spltrnk, &sz2);
+     vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS);
+     sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS);
+
+     cld1 = X(mkplan_d)(plnr, 
+			X(mkproblem_rdft_d)(X(tensor_copy)(sz2),
+					    X(tensor_append)(p->vecsz, sz1),
+					    p->I, p->O, p->kind + spltrnk));
+     if (!cld1) goto nada;
+
+     cld2 = X(mkplan_d)(plnr, 
+			X(mkproblem_rdft_d)(
+			     X(tensor_copy_inplace)(sz1, INPLACE_OS),
+			     X(tensor_append)(vecszi, sz2i),
+			     p->O, p->O, p->kind));
+     if (!cld2) goto nada;
+
+     pln = MKPLAN_RDFT(P, &padt, apply);
+
+     pln->cld1 = cld1;
+     pln->cld2 = cld2;
+
+     pln->solver = ego;
+     X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
+
+     X(tensor_destroy4)(sz2, sz1, vecszi, sz2i);
+
+     return &(pln->super.super);
+
+ nada:
+     X(plan_destroy_internal)(cld2);
+     X(plan_destroy_internal)(cld1);
+     X(tensor_destroy4)(sz2, sz1, vecszi, sz2i);
+     return (plan *) 0;
+}
+
+static solver *mksolver(int spltrnk, const int *buddies, size_t nbuddies)
+{
+     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
+     S *slv = MKSOLVER(S, &sadt);
+     slv->spltrnk = spltrnk;
+     slv->buddies = buddies;
+     slv->nbuddies = nbuddies;
+     return &(slv->super);
+}
+
+void X(rdft_rank_geq2_register)(planner *p)
+{
+     static const int buddies[] = { 1, 0, -2 };
+     size_t i;
+
+     for (i = 0; i < NELEM(buddies); ++i)
+          REGISTER_SOLVER(p, mksolver(buddies[i], buddies, NELEM(buddies)));
+
+     /* FIXME: Should we try more buddies?  See also dft/rank-geq2. */
+}