diff src/fftw-3.3.8/rdft/ct-hc2c.c @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.8/rdft/ct-hc2c.c	Tue Nov 19 14:52:55 2019 +0000
@@ -0,0 +1,296 @@
+/*
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+#include "ct-hc2c.h"
+#include "dft/dft.h"
+
+typedef struct {
+     plan_rdft2 super;
+     plan *cld;
+     plan *cldw;
+     INT r;
+} P;
+
+static void apply_dit(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
+{
+     const P *ego = (const P *) ego_;
+     plan_rdft *cld;
+     plan_hc2c *cldw;
+     UNUSED(r1);
+
+     cld = (plan_rdft *) ego->cld;
+     cld->apply(ego->cld, r0, cr);
+
+     cldw = (plan_hc2c *) ego->cldw;
+     cldw->apply(ego->cldw, cr, ci);
+}
+
+static void apply_dif(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
+{
+     const P *ego = (const P *) ego_;
+     plan_rdft *cld;
+     plan_hc2c *cldw;
+     UNUSED(r1);
+
+     cldw = (plan_hc2c *) ego->cldw;
+     cldw->apply(ego->cldw, cr, ci);
+
+     cld = (plan_rdft *) ego->cld;
+     cld->apply(ego->cld, cr, r0);
+}
+
+static void apply_dit_dft(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
+{
+     const P *ego = (const P *) ego_;
+     plan_dft *cld;
+     plan_hc2c *cldw;
+
+     cld = (plan_dft *) ego->cld;
+     cld->apply(ego->cld, r0, r1, cr, ci);
+
+     cldw = (plan_hc2c *) ego->cldw;
+     cldw->apply(ego->cldw, cr, ci);
+}
+
+static void apply_dif_dft(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
+{
+     const P *ego = (const P *) ego_;
+     plan_dft *cld;
+     plan_hc2c *cldw;
+
+     cldw = (plan_hc2c *) ego->cldw;
+     cldw->apply(ego->cldw, cr, ci);
+
+     cld = (plan_dft *) ego->cld;
+     cld->apply(ego->cld, ci, cr, r1, r0);
+}
+
+static void awake(plan *ego_, enum wakefulness wakefulness)
+{
+     P *ego = (P *) ego_;
+     X(plan_awake)(ego->cld, wakefulness);
+     X(plan_awake)(ego->cldw, wakefulness);
+}
+
+static void destroy(plan *ego_)
+{
+     P *ego = (P *) ego_;
+     X(plan_destroy_internal)(ego->cldw);
+     X(plan_destroy_internal)(ego->cld);
+}
+
+static void print(const plan *ego_, printer *p)
+{
+     const P *ego = (const P *) ego_;
+     p->print(p, "(rdft2-ct-%s/%D%(%p%)%(%p%))",
+	      (ego->super.apply == apply_dit || 
+	       ego->super.apply == apply_dit_dft)
+	      ? "dit" : "dif",
+	      ego->r, ego->cldw, ego->cld);
+}
+
+static int applicable0(const hc2c_solver *ego, const problem *p_, planner *plnr)
+{
+     const problem_rdft2 *p = (const problem_rdft2 *) p_;
+     INT r;
+
+     return (1
+	     && p->sz->rnk == 1
+	     && p->vecsz->rnk <= 1 
+
+	     && (/* either the problem is R2HC, which is solved by DIT */
+		  (p->kind == R2HC)
+		  ||
+		  /* or the problem is HC2R, in which case it is solved
+		     by DIF, which destroys the input */
+		  (p->kind == HC2R && 
+		   (p->r0 == p->cr || !NO_DESTROY_INPUTP(plnr))))
+		  
+	     && ((r = X(choose_radix)(ego->r, p->sz->dims[0].n)) > 0)
+	     && p->sz->dims[0].n > r);
+}
+
+static int hc2c_applicable(const hc2c_solver *ego, const problem *p_,
+                           planner *plnr)
+{
+     const problem_rdft2 *p;
+
+     if (!applicable0(ego, p_, plnr))
+          return 0;
+
+     p = (const problem_rdft2 *) p_;
+
+     return (0
+	     || p->vecsz->rnk == 0
+	     || !NO_VRECURSEP(plnr)
+	  );
+}
+
+static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
+{
+     const hc2c_solver *ego = (const hc2c_solver *) ego_;
+     const problem_rdft2 *p;
+     P *pln = 0;
+     plan *cld = 0, *cldw = 0;
+     INT n, r, m, v, ivs, ovs;
+     iodim *d;
+
+     static const plan_adt padt = {
+	  X(rdft2_solve), awake, print, destroy
+     };
+
+     if (!hc2c_applicable(ego, p_, plnr))
+          return (plan *) 0;
+
+     p = (const problem_rdft2 *) p_;
+     d = p->sz->dims;
+     n = d[0].n;
+     r = X(choose_radix)(ego->r, n);
+     A((r % 2) == 0);
+     m = n / r;
+
+     X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
+
+     switch (p->kind) {
+	 case R2HC:
+	      cldw = ego->mkcldw(ego, R2HC, 
+				 r, m * d[0].os, 
+				 m, d[0].os,
+				 v, ovs,
+				 p->cr, p->ci, plnr);
+	      if (!cldw) goto nada;
+
+	      switch (ego->hc2ckind) {
+		  case HC2C_VIA_RDFT:
+		       cld = X(mkplan_d)(
+			    plnr, 
+			    X(mkproblem_rdft_1_d)(
+				 X(mktensor_1d)(m, (r/2)*d[0].is, d[0].os),
+				 X(mktensor_3d)(
+				      2, p->r1 - p->r0, p->ci - p->cr,
+				      r / 2, d[0].is, m * d[0].os,
+				      v, ivs, ovs),
+				 p->r0, p->cr, R2HC) 
+			    );
+		       if (!cld) goto nada;
+
+		       pln = MKPLAN_RDFT2(P, &padt, apply_dit);
+		       break;
+
+		  case HC2C_VIA_DFT:
+		       cld = X(mkplan_d)(
+			    plnr, 
+			    X(mkproblem_dft_d)(
+				 X(mktensor_1d)(m, (r/2)*d[0].is, d[0].os),
+				 X(mktensor_2d)(
+				      r / 2, d[0].is, m * d[0].os,
+				      v, ivs, ovs),
+				 p->r0, p->r1, p->cr, p->ci) 
+			    );
+		       if (!cld) goto nada;
+
+		       pln = MKPLAN_RDFT2(P, &padt, apply_dit_dft);
+		       break;
+	      }
+	      break;
+
+	 case HC2R:
+	      cldw = ego->mkcldw(ego, HC2R, 
+				 r, m * d[0].is, 
+				 m, d[0].is,
+				 v, ivs,
+				 p->cr, p->ci, plnr);
+	      if (!cldw) goto nada;
+
+	      switch (ego->hc2ckind) {
+		  case HC2C_VIA_RDFT:
+		       cld = X(mkplan_d)(
+			    plnr, 
+			    X(mkproblem_rdft_1_d)(
+				 X(mktensor_1d)(m, d[0].is, (r/2)*d[0].os),
+				 X(mktensor_3d)(
+				      2, p->ci - p->cr, p->r1 - p->r0, 
+				      r / 2, m * d[0].is, d[0].os,
+				      v, ivs, ovs),
+				 p->cr, p->r0, HC2R) 
+			    );
+		       if (!cld) goto nada;
+
+		       pln = MKPLAN_RDFT2(P, &padt, apply_dif);
+		       break;
+
+		  case HC2C_VIA_DFT:
+		       cld = X(mkplan_d)(
+			    plnr, 
+			    X(mkproblem_dft_d)(
+				 X(mktensor_1d)(m, d[0].is, (r/2)*d[0].os),
+				 X(mktensor_2d)(
+				      r / 2, m * d[0].is, d[0].os,
+				      v, ivs, ovs),
+				 p->ci, p->cr, p->r1, p->r0) 
+			    );
+		       if (!cld) goto nada;
+
+		       pln = MKPLAN_RDFT2(P, &padt, apply_dif_dft);
+		       break;
+	      }
+	      break;
+
+	 default: 
+	      A(0);
+     }
+
+     pln->cld = cld;
+     pln->cldw = cldw;
+     pln->r = r;
+     X(ops_add)(&cld->ops, &cldw->ops, &pln->super.super.ops);
+
+     /* inherit could_prune_now_p attribute from cldw */
+     pln->super.super.could_prune_now_p = cldw->could_prune_now_p;
+
+     return &(pln->super.super);
+
+ nada:
+     X(plan_destroy_internal)(cldw);
+     X(plan_destroy_internal)(cld);
+     return (plan *) 0;
+}
+
+hc2c_solver *X(mksolver_hc2c)(size_t size, INT r, 
+			      hc2c_kind hc2ckind,
+			      hc2c_mkinferior mkcldw)
+{
+     static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
+     hc2c_solver *slv = (hc2c_solver *)X(mksolver)(size, &sadt);
+     slv->r = r;
+     slv->hc2ckind = hc2ckind;
+     slv->mkcldw = mkcldw;
+     return slv;
+}
+
+plan *X(mkplan_hc2c)(size_t size, const plan_adt *adt, hc2capply apply)
+{
+     plan_hc2c *ego;
+
+     ego = (plan_hc2c *) X(mkplan)(size, adt);
+     ego->apply = apply;
+
+     return &(ego->super);
+}