diff src/fftw-3.3.8/genfft/c.ml @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.8/genfft/c.ml	Tue Nov 19 14:52:55 2019 +0000
@@ -0,0 +1,461 @@
+(*
+ * Copyright (c) 1997-1999 Massachusetts Institute of Technology
+ * Copyright (c) 2003, 2007-14 Matteo Frigo
+ * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ *)
+
+(*
+ * This module contains the definition of a C-like abstract
+ * syntax tree, and functions to convert ML values into C
+ * programs
+ *)
+
+open Expr
+open Annotate
+open List
+
+let realtype = "R"
+let realtypep = realtype ^ " *"
+let extended_realtype = "E"
+let constrealtype = "const " ^ realtype
+let constrealtypep = constrealtype ^ " *"
+
+let stridetype = "stride"
+
+(***********************************
+ * C program structure 
+ ***********************************)
+type c_decl = 
+  | Decl of string * string
+  | Tdecl of string                (* arbitrary text declaration *)
+
+and c_ast =
+  | Asch of annotated_schedule
+  | Simd_leavefun
+  | Return of c_ast
+  | For of c_ast * c_ast * c_ast * c_ast
+  | If of c_ast * c_ast
+  | Block of (c_decl list) * (c_ast list)
+  | Binop of string * c_ast * c_ast
+  | Expr_assign of c_ast * c_ast
+  | Stmt_assign of c_ast * c_ast
+  | Comma of c_ast * c_ast
+  | Integer of int
+  | CVar of string
+  | CCall of string * c_ast
+  | CPlus of c_ast list
+  | ITimes of c_ast * c_ast
+  | CUminus of c_ast
+and c_fcn = Fcn of string * string * (c_decl list) * c_ast
+
+
+let ctimes = function
+  | (Integer 1), a -> a
+  | a, (Integer 1) -> a
+  | a, b -> ITimes (a, b)
+
+(*
+ * C AST unparser 
+ *)
+let foldr_string_concat l = fold_right (^) l ""
+
+let rec unparse_expr_c =
+  let yes x = x and no x = "" in
+
+  let rec unparse_plus maybe = 
+    let maybep = maybe " + " in
+    function
+    | [] -> ""
+    | (Uminus (Times (a, b))) :: (Uminus c) :: d -> 
+	maybep ^ (op "FNMA" a b c) ^ (unparse_plus yes d)
+    | (Uminus c) :: (Uminus (Times (a, b))) :: d -> 
+	maybep ^ (op "FNMA" a b c) ^ (unparse_plus yes d)
+    | (Uminus (Times (a, b))) :: c :: d -> 
+	maybep ^ (op "FNMS" a b c) ^ (unparse_plus yes d)
+    | c :: (Uminus (Times (a, b))) :: d -> 
+	maybep ^ (op "FNMS" a b c) ^ (unparse_plus yes d)
+    | (Times (a, b)) :: (Uminus c) :: d -> 
+	maybep ^ (op "FMS" a b c) ^ (unparse_plus yes d)
+    | (Uminus c) :: (Times (a, b)) :: d -> 
+	maybep ^ (op "FMS" a b c) ^ (unparse_plus yes d)
+    | (Times (a, b)) :: c :: d -> 
+	maybep ^ (op "FMA" a b c) ^ (unparse_plus yes d)
+    | c :: (Times (a, b)) :: d -> 
+	maybep ^ (op "FMA" a b c) ^ (unparse_plus yes d)
+    | (Uminus a :: b) -> 
+	" - " ^ (parenthesize a) ^ (unparse_plus yes b)
+    | (a :: b) -> 
+	maybep ^ (parenthesize a) ^ (unparse_plus yes b)
+  and parenthesize x = match x with
+  | (Load _) -> unparse_expr_c x
+  | (Num _) -> unparse_expr_c x
+  | _ -> "(" ^ (unparse_expr_c x) ^ ")"
+  and op nam a b c =
+    nam ^ "(" ^ (unparse_expr_c a) ^ ", " ^ (unparse_expr_c b) ^ ", " ^
+    (unparse_expr_c c) ^ ")"
+      			      
+  in function
+    | Load v -> Variable.unparse v
+    | Num n -> Number.to_konst n
+    | Plus [] -> "0.0 /* bug */"
+    | Plus [a] -> " /* bug */ " ^ (unparse_expr_c a)
+    | Plus a -> (unparse_plus no a)
+    | Times (a, b) -> (parenthesize a) ^ " * " ^ (parenthesize b)
+    | Uminus (Plus [a; Uminus b]) -> unparse_plus no [b; Uminus a]
+    | Uminus a -> "- " ^ (parenthesize a)
+    | _ -> failwith "unparse_expr_c"
+
+and unparse_expr_generic = 
+  let rec u x = unparse_expr_generic x
+  and unary op a = Printf.sprintf "%s(%s)" op (u a)
+  and binary op a b = Printf.sprintf "%s(%s, %s)" op (u a) (u b)
+  and ternary op a b c = Printf.sprintf "%s(%s, %s, %s)" op (u a) (u b) (u c)
+  and quaternary op a b c d = 
+    Printf.sprintf "%s(%s, %s, %s, %s)" op (u a) (u b) (u c) (u d)
+  and unparse_plus = function
+    | [(Uminus (Times (a, b))); Times (c, d)] -> quaternary "FNMMS" a b c d
+    | [Times (c, d); (Uminus (Times (a, b)))] -> quaternary "FNMMS" a b c d
+    | [Times (c, d); (Times (a, b))] -> quaternary "FMMA" a b c d
+    | [(Uminus (Times (a, b))); c] -> ternary "FNMS" a b c
+    | [c; (Uminus (Times (a, b)))] -> ternary "FNMS" a b c
+    | [(Uminus c); (Times (a, b))] -> ternary "FMS" a b c
+    | [(Times (a, b)); (Uminus c)] -> ternary "FMS" a b c
+    | [c; (Times (a, b))] -> ternary "FMA" a b c
+    | [(Times (a, b)); c] -> ternary "FMA" a b c
+    | [a; Uminus b] -> binary "SUB" a b
+    | [a; b] -> binary "ADD" a b
+    | a :: b :: c -> binary "ADD" a (Plus (b :: c))
+    | _ -> failwith "unparse_plus"
+  in function
+    | Load v -> Variable.unparse v 
+    | Num n -> Number.to_konst n
+    | Plus a -> unparse_plus a
+    | Times (a, b) -> binary "MUL" a b
+    | Uminus a -> unary "NEG" a
+    | _ -> failwith "unparse_expr"
+
+and unparse_expr x = 
+  if !Magic.generic_arith then
+    unparse_expr_generic x
+  else
+    unparse_expr_c x
+
+and unparse_assignment (Assign (v, x)) =
+  (Variable.unparse v) ^ " = " ^ (unparse_expr x) ^ ";\n"
+
+and unparse_annotated force_bracket = 
+  let rec unparse_code = function
+      ADone -> ""
+    | AInstr i -> unparse_assignment i
+    | ASeq (a, b) -> 
+        (unparse_annotated false a) ^ (unparse_annotated false b)
+  and declare_variables l = 
+    let rec uvar = function
+	[] -> failwith "uvar"
+      |	[v] -> (Variable.unparse v) ^ ";\n"
+      | a :: b -> (Variable.unparse a) ^ ", " ^ (uvar b)
+    in let rec vvar l = 
+      let s = if !Magic.compact then 15 else 1 in
+      if (List.length l <= s) then
+	match l with
+	  [] -> ""
+	| _ -> extended_realtype ^ " " ^ (uvar l)
+      else
+	(vvar (Util.take s l)) ^ (vvar (Util.drop s l))
+    in vvar (List.filter Variable.is_temporary l)
+  in function
+      Annotate (_, _, decl, _, code) ->
+        if (not force_bracket) && (Util.null decl) then 
+          unparse_code code
+        else "{\n" ^
+          (declare_variables decl) ^
+          (unparse_code code) ^
+	  "}\n"
+
+and unparse_decl = function
+  | Decl (a, b) -> a ^ " " ^ b ^ ";\n"
+  | Tdecl x -> x
+
+and unparse_ast = 
+  let rec unparse_plus = function
+    | [] -> ""
+    | (CUminus a :: b) -> " - " ^ (parenthesize a) ^ (unparse_plus b)
+    | (a :: b) -> " + " ^ (parenthesize a) ^ (unparse_plus b)
+  and parenthesize x = match x with
+  | (CVar _) -> unparse_ast x
+  | (CCall _) -> unparse_ast x
+  | (Integer _) -> unparse_ast x
+  | _ -> "(" ^ (unparse_ast x) ^ ")"
+
+  in
+  function
+    | Asch a -> (unparse_annotated true a)
+    | Simd_leavefun -> "" (* used only in SIMD code *)
+    | Return x -> "return " ^ unparse_ast x ^ ";"
+    | For (a, b, c, d) ->
+	"for (" ^
+	unparse_ast a ^ "; " ^ unparse_ast b ^ "; " ^ unparse_ast c
+	^ ")" ^ unparse_ast d
+    | If (a, d) ->
+	"if (" ^
+	unparse_ast a 
+	^ ")" ^ unparse_ast d
+    | Block (d, s) ->
+	if (s == []) then ""
+	else 
+          "{\n"                                      ^ 
+          foldr_string_concat (map unparse_decl d)   ^ 
+          foldr_string_concat (map unparse_ast s)    ^
+          "}\n"      
+    | Binop (op, a, b) -> (unparse_ast a) ^ op ^ (unparse_ast b)
+    | Expr_assign (a, b) -> (unparse_ast a) ^ " = " ^ (unparse_ast b)
+    | Stmt_assign (a, b) -> (unparse_ast a) ^ " = " ^ (unparse_ast b) ^ ";\n"
+    | Comma (a, b) -> (unparse_ast a) ^ ", " ^ (unparse_ast b)
+    | Integer i -> string_of_int i
+    | CVar s -> s
+    | CCall (s, x) -> s ^ "(" ^ (unparse_ast x) ^ ")"
+    | CPlus [] -> "0 /* bug */"
+    | CPlus [a] -> " /* bug */ " ^ (unparse_ast a)
+    | CPlus (a::b) -> (parenthesize a) ^ (unparse_plus b)
+    | ITimes (a, b) -> (parenthesize a) ^ " * " ^ (parenthesize b)
+    | CUminus a -> "- " ^ (parenthesize a)
+
+and unparse_function = function
+    Fcn (typ, name, args, body) ->
+      let rec unparse_args = function
+          [Decl (a, b)] -> a ^ " " ^ b 
+	| (Decl (a, b)) :: s -> a ^ " " ^ b  ^ ", "
+            ^  unparse_args s
+	| [] -> ""
+	| _ -> failwith "unparse_function"
+      in 
+      (typ ^ " " ^ name ^ "(" ^ unparse_args args ^ ")\n" ^
+       unparse_ast body)
+
+
+(*************************************************************
+ * traverse a a function and return a list of all expressions,
+ * in the execution order
+ **************************************************************)
+let rec fcn_to_expr_list = fun (Fcn (_, _, _, body)) -> ast_to_expr_list body 
+and acode_to_expr_list = function
+    AInstr (Assign (_, x)) -> [x]
+  | ASeq (a, b) -> 
+      (asched_to_expr_list a) @ (asched_to_expr_list b)
+  | _ -> []
+and asched_to_expr_list (Annotate (_, _, _, _, code)) =
+  acode_to_expr_list code
+and ast_to_expr_list = function
+    Asch a -> asched_to_expr_list a
+  | Block (_, a) -> flatten (map ast_to_expr_list a)
+  | For (_, _, _, body) ->  ast_to_expr_list body
+  | If (_, body) ->  ast_to_expr_list body
+  | _ -> []
+
+(***********************
+ * Extracting Constants
+ ***********************)
+
+(* add a new key & value to a list of (key,value) pairs, where
+   the keys are floats and each key is unique up to almost_equal *)
+
+let extract_constants f =
+  let constlist = flatten (map expr_to_constants (ast_to_expr_list f))
+  in map
+       (fun n ->
+	  Tdecl 
+	    ("DK(" ^ (Number.to_konst n) ^ ", " ^ (Number.to_string n) ^ 
+	       ");\n"))
+       (unique_constants constlist)
+       
+(******************************
+   Extracting operation counts 
+ ******************************)
+
+let count_stack_vars =
+  let rec count_acode = function
+    | ASeq (a, b) -> max (count_asched a) (count_asched b)
+    | _ -> 0
+  and count_asched (Annotate (_, _, decl, _, code)) =
+    (length decl) + (count_acode code)
+  and count_ast = function
+    | Asch a -> count_asched a
+    | Block (d, a) -> (length d) + (Util.max_list (map count_ast a))
+    | For (_, _, _, body) -> count_ast body
+    | If (_, body) -> count_ast body
+    | _ -> 0
+  in function (Fcn (_, _, _, body)) -> count_ast body
+
+let count_memory_acc f =
+  let rec count_var v =
+    if (Variable.is_locative v)	then 1 else 0
+  and count_acode = function
+    | AInstr (Assign (v, _)) -> count_var v
+    | ASeq (a, b) -> (count_asched a) + (count_asched b)
+    | _ -> 0
+  and count_asched = function
+      Annotate (_, _, _, _, code) -> count_acode code
+  and count_ast = function
+    | Asch a -> count_asched a
+    | Block (_, a) -> (Util.sum_list (map count_ast a))
+    | Comma (a, b) -> (count_ast a) + (count_ast b)
+    | For (_, _, _, body) -> count_ast body
+    | If (_, body) -> count_ast body
+    | _ -> 0
+  and count_acc_expr_func acc = function
+    | Load v -> acc + (count_var v)
+    | Plus a -> fold_left count_acc_expr_func acc a
+    | Times (a, b) -> fold_left count_acc_expr_func acc [a; b]
+    | Uminus a -> count_acc_expr_func acc a
+    | _ -> acc
+  in let (Fcn (typ, name, args, body)) = f
+  in (count_ast body) + 
+    fold_left count_acc_expr_func 0 (fcn_to_expr_list f)
+
+let good_for_fma = To_alist.good_for_fma
+
+let build_fma = function
+  | [a; Times (b, c)] when good_for_fma (b, c) -> Some (a, b, c)
+  | [Times (b, c); a] when good_for_fma (b, c) -> Some (a, b, c)
+  | [a; Uminus (Times (b, c))] when good_for_fma (b, c) -> Some (a, b, c)
+  | [Uminus (Times (b, c)); a] when good_for_fma (b, c) -> Some (a, b, c)
+  | _ -> None
+
+let rec count_flops_expr_func (adds, mults, fmas) = function
+  | Plus [] -> (adds, mults, fmas)
+  | Plus ([_; _] as a) -> 
+      begin
+	match build_fma a with
+	  | None ->
+	      fold_left count_flops_expr_func 
+		(adds + (length a) - 1, mults, fmas) a
+	  | Some (a, b, c) ->
+	      fold_left count_flops_expr_func (adds, mults, fmas+1) [a; b; c]
+      end
+  | Plus (a :: b) -> 
+      count_flops_expr_func (adds, mults, fmas) (Plus [a; Plus b])
+  | Times (NaN MULTI_A,_)  -> (adds, mults, fmas)
+  | Times (NaN MULTI_B,_)  -> (adds, mults, fmas)
+  | Times (NaN I,b) -> count_flops_expr_func (adds, mults, fmas) b
+  | Times (NaN CONJ,b) -> count_flops_expr_func (adds, mults, fmas) b
+  | Times (a,b) -> fold_left count_flops_expr_func (adds, mults+1, fmas) [a; b]
+  | CTimes (a,b) -> 
+      fold_left count_flops_expr_func (adds+1, mults+2, fmas) [a; b]
+  | CTimesJ (a,b) -> 
+      fold_left count_flops_expr_func (adds+1, mults+2, fmas) [a; b]
+  | Uminus a -> count_flops_expr_func (adds, mults, fmas) a
+  | _ -> (adds, mults, fmas)
+
+let count_flops f = 
+    fold_left count_flops_expr_func (0, 0, 0) (fcn_to_expr_list f)
+
+let count_constants f = 
+    length (unique_constants (flatten (map expr_to_constants (fcn_to_expr_list f))))
+
+let arith_complexity f =
+  let (a, m, fmas) = count_flops f
+  and v = count_stack_vars f
+  and c = count_constants f
+  and mem = count_memory_acc f
+  in (a, m, fmas, v, c, mem)
+
+(* print the operation costs *)
+let print_cost f =
+  let Fcn (_, _, _, _) = f 
+  and (a, m, fmas, v, c, mem) = arith_complexity f
+  in
+  "/*\n"^
+  " * This function contains " ^
+  (string_of_int (a + fmas)) ^ " FP additions, "  ^
+  (string_of_int (m + fmas)) ^ " FP multiplications,\n" ^
+  " * (or, " ^
+  (string_of_int a) ^ " additions, "  ^
+  (string_of_int m) ^ " multiplications, " ^
+  (string_of_int fmas) ^ " fused multiply/add),\n" ^
+  " * " ^ (string_of_int v) ^ " stack variables, " ^
+  (string_of_int c) ^ " constants, and " ^
+  (string_of_int mem) ^ " memory accesses\n" ^
+  " */\n"
+
+(*****************************************
+ * functions that create C arrays 
+ *****************************************)
+type stride = 
+  | SVar of string
+  | SConst of string
+  | SInteger of int
+  | SNeg of stride
+
+type sstride =
+  | Simple of int
+  | Constant of (string * int)
+  | Composite of (string * int)
+  | Negative of sstride
+
+let rec simplify_stride stride i =
+    match (stride, i) with
+      (_, 0) -> Simple 0
+    | (SInteger n, i) -> Simple (n * i)
+    | (SConst s, i) -> Constant (s, i)
+    | (SVar s, i) -> Composite (s, i)
+    | (SNeg x, i) -> 
+	match (simplify_stride x i) with
+	| Negative y -> y
+	| y -> Negative y
+  
+let rec cstride_to_string = function
+  | Simple i -> string_of_int i
+  | Constant (s, i) -> 
+        if !Magic.lisp_syntax then
+	  "(* " ^ s ^ " " ^ (string_of_int i) ^ ")"
+	else
+	  s ^ " * " ^ (string_of_int i)
+  | Composite (s, i) -> 
+        if !Magic.lisp_syntax then
+	  "(* " ^ s ^ " " ^ (string_of_int i) ^ ")"
+	else
+	  "WS(" ^ s ^ ", " ^ (string_of_int i) ^ ")"
+  | Negative x -> "-" ^ cstride_to_string x
+
+let aref name index = 
+  if !Magic.lisp_syntax then
+    Printf.sprintf "(aref %s %s)"  name index
+  else
+    Printf.sprintf "%s[%s]"  name index
+
+let array_subscript name stride k = 
+  aref name (cstride_to_string (simplify_stride stride k))
+
+let varray_subscript name vstride stride v i = 
+  let vindex = simplify_stride vstride v
+  and iindex = simplify_stride stride i
+  in 
+  let index = 
+    match (vindex, iindex) with
+      (Simple vi, Simple ii) -> string_of_int (vi + ii)
+    | (Simple 0, x) -> cstride_to_string x
+    | (x, Simple 0) -> cstride_to_string x
+    | _ -> (cstride_to_string vindex) ^ " + " ^ (cstride_to_string iindex)
+  in aref name index
+
+let real_of s = "c_re(" ^ s ^ ")"
+let imag_of s = "c_im(" ^ s ^ ")"
+
+let flops_of f =
+  let (add, mul, fma) = count_flops f in
+  Printf.sprintf "{ %d, %d, %d, 0 }" add mul fma